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Abstract

Chronic granulomatous disease is a primary immunodeficiency caused by mutations in the genes encoding subunits of the

phagocytic NADPH oxidase system. Patients can present with severe, recurrent infections and noninfectious conditions.

Among the latter, inflammatory manifestations are predominant, especially granulomas and colitis. In this article, we

systematically review the possible mechanisms of hyperinflammation in this rare primary immunodeficiency condition and their

correlations with clinical aspects.
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Introduction

Chronic granulomatous disease (CGD) is a fatal

primary immunodeficiency caused by mutations in the

genes encoding subunits of the NADPH oxidase system,

which consists of five subunits. Therefore, this disease

has five genetic variants. Mutations in the CYBB gene are

responsible for the X-linked form of the disease that

encodes gp91phox, also called NOX2, accounting for

two-thirds of CGD cases. Mutations in the other four

components account for the remaining one-third of CGD

cases and are inherited in an autosomal recessive

manner. These are CYBA, encoding p22phox; NCF2,

encoding p67phox; NCF1, encoding p47phox; and NCF4,
encoding p40phox, with the latter being the most recently

described (1-6). These defects lead to a failure of

phagocytes to catalytically convert oxygen to superoxide

and other reactive oxygen species (ROS) that play a key

role in killing intracellular pathogens. Usually, patients

with X-linked CGD manifest a more severe clinical

phenotype with greater morbidity and mortality than

patients with autosomal recessive forms (7-9).

The prevalence of CGD at birth has been estimated to

be 1 per 120,000-250,000 people (10). CGD patients suffer

from early and recurrent severe bacterial and fungal

infections (11) that primarily affect the natural barriers of

the human body, such as the skin, lymph nodes, and the

respiratory tract. Bones and the liver, spleen, and brain can

also be affected by infections (12).

The main causes of infections in CGD patients

are Staphylococcus aureus, Burkholderia cepacia,
Pseudomonas, Serratia marcescens, Aspergillus, and

Nocardia species (13). Salmonella sp. are also an important

cause of sepsis and mortality and can affect 18% of CGD

patients (14). Olfactomedin 4 (OLFM4) is a neutrophil

granule protein that negatively regulates host defenses

against bacterial infection. Recently, Liu et al. (15) evaluated

the impact of OLFM4 deletion on host defenses against S.
aureus and Aspergillus fumigatus in a murine gp91phox-

deficiency CGD model. The authors demonstrated that

resistance to S. aureus sepsis, as well as intracellular killing
and in vivo clearance of these bacteria, were significantly

increased in gp91phox and OLFM4 double-deficient mice

compared with CGD mice. However, the authors did not

observe enhanced defenses against A. fumigatus in OLFM

4-deficient mice. These results suggest that OLFM4may be

an important tool in CGD patients to increase host defenses

against bacterial infection.

Inflammation in CGD

NADPH oxidase consists of a family of seven

members: NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1,

and DUOX2 (16). The NADPH oxidase complex 2 is

mainly expressed by phagocytes and endothelial cells

(17,18). The membrane complex is formed by two
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transmembrane subunits (p22phox and gp91phox, also

called NOX2), which are able to couple with the cytosolic

subunits (p47phox, p40phox, and p67phox) and small

GTPases Rac1 or Rac2. These GTPases are essential

for coupling of p67phox to gp91phox, and the subunits

p47phox and p40phox are phosphorylated close to

gp91phox on the cell membrane when stimulated. This

sequence of events allows the transfer of electrons from

NADPH to molecular oxygen and produces ROS (19,20).

Deficiency of any subunit of NADPH oxidase 2 results in

CGD.

Inflammation is frequent in patients with CGD, and in

some instances it can be the first clinical manifestation.

The disease is so named for the exuberant chronic

granuloma formation observed in patients. Current data

indicate that either increased or decreased NOX2 activity

may lead to inflammatory complications (21,22). The

association of increased NOX2 activity with inflammation

has been widely discussed. The transcription nuclear

factor kappa B (NF-kappa B) controls the expression of

several genes involved in the immune-inflammatory

response, and is a key activator of innate immunity (23).

However, studies evaluating the role of NOX2 in NF-

kappa B-induced transcription and, consequently, activa-

tion or maintenance of the inflammatory response are

controversial. Weissmann et al. (24) demonstrated that

deficiency of endothelial NOX2, induced by ischemia-

reperfusion in mice, prevented lung edema. Reinforcing

these findings, Gandhirajan et al. (25) showed that NOX2-

deficient mice had reduced inflammatory release media-

tors in a model of acute lung injury compared to wild-type

controls. On the other hand, some evidence points to a

protective role of endothelial NOX2 in lung inflammation.

Whitmore et al. (26) used a murine model of sterile

generalized inflammation and observed dramatically

increased mortality of NOX2-deficient mice compared to

wild-type mice. The recruited NOX2-deficient neutrophils

demonstrated an enhanced inflammatory phenotype and

induced a hemorrhagic inflammatory response in the

lungs with rapid and persistent recruitment of neutrophils

to the alveolar space.

NADPH oxidase deficiency has been seen predomi-

nantly as an immunodeficiency, characterized by an

inability to mount an inflammatory response. However,

there is current evidence for hyperinflammatory complica-

tions of CGD.

The main manifestations are represented prominently

by granulomas, as well as colitis, which is frequent and

leads to substantial morbidity. Defects of microbicidal

activity can facilitate the persistence of pathogens and

increase the inflammatory response in some patients

(27,28).

Symptomatic disease can include colitis or enteritis,

usually caused by microscopic granulomas, or mechan-

ical obstruction of either the digestive or urinary tract,

especially by macroscopic granulomas (29). Research

conducted at the National Institutes of Health in the United

States showed inflammatory involvement of the gastro-

intestinal tract in 32.8% of 140 patients with CGD, 89% of

whom had X-linked inheritance (30). Granuloma formation

can affect various organs, with a preference for hollow

viscera, such as the colon, stomach, esophagus, and

bladder (22).

Granulomas can occur in most instances without an

infectious pathogen. This fact can be verified by the

absence of microbes inside the lesions and because the

lesions often respond to several immunomodulators, such

as steroids, cyclosporine A, or azathioprine (22).

Nevertheless, the primary mechanism of the increased

inflammatory response remains poorly understood.

Nonspecific persistent inflammation is a frequent

histopathological finding, and the most commonly

described feature is acute and/or chronic inflammation

with fibrosis containing noncaseous granulomas.

However, the lesions can exhibit particular features in

some tissues such as the liver, lymph nodes, and

intestinal tract. With active chronic inflammation, one

can observe increased numbers of eosinophils, eosino-

philic crypt abscesses (intestinal tract), abundant nuclear

debris and pigmented macrophages, and a relative

paucity of neutrophils (31). This can help differentiate

hyperinflammatory manifestations of CGD from other

granulomatous diseases like Crohn’s disease or tubercu-

losis (32).

Characteristics and possible mechanisms
of inflammation in CGD

A high production of ROS is usually associated with

hyperinflammation. Therefore, the absence or reduction

of ROS generation by the NADPH oxidase system leading

to enhanced inflammation represents a paradigm shift

and requires investigation into underlying mechanisms. It

is possible that ROS can modulate the inflammatory

response, and the NADPH oxidase system is likely to play

an important role in this resolution (22). Some properties

of ROS may justify a regulatory action in inflammatory

processes, like suppression of proinflammatory media-

tors, degradation of phagocytosed particles, and impaired

survival of proinflammatory cells. The following sections

describe possible mechanisms.

NOX2 signaling in myeloid cells
Disruption of calcium channels. Ca2++ signaling may

be impaired in patients with CGD, contributing to

hyperinflammation. This can be explained by a more

negative membrane potential of CGD granulocytes, which

contributes to increased Ca2++ influx and thereby an

enhanced inflammatory response (33).

Impaired intracellular signaling and an imbalance of
inflammatory mediators. The absence of ROS in CGD

leukocytes creates signaling alterations that favor
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proinflammatory responses. This can be explained by

ROS involvement in the regulation of intracellular

signaling, especially the oxidation of cysteine residues in

phosphatases and transcription factors (34). CGD

phagocytes produce high levels of tumor necrosis

factor-alpha and interleukin (IL)-8, probably through

hyperactivation of NF-kappa B, contributing to the

inflammatory response (33,35). Moreover, there is some

evidence that NOX2 deficiency can reduce the activation

of indoleamine dioxygenase, leading to higher gamma-

delta T cell activity and IL-17 production (3). Myeloid-

related proteins (MRP), also called S100A8 (MRP8) and

S100A9 (MRP14), are two calcium-binding proteins linked

to innate immunity, and they are expressed in neutrophils

and monocytes. One of their main functions is to favor

NADPH oxidase activation. Therefore, these proteins are

important mediators of inflammatory disease (36). On the

other hand, the production of anti-inflammatory mediators

such as IL-10, transforming growth factor beta (TGF-b),

and prostaglandin 2 by human CGD phagocytes is usually

low (37).

It seems that CGD phagocytes are unable to

inactivate inflammatory mediators. The catabolism of

leukotrienes and S100 proteins is ROS production

dependent in vitro (38).

Abnormal apoptosis. There is evidence suggesting

that ROS can induce neutrophil apoptosis. Apoptosis of

inflammatory cells represents an important physiological

mechanism to avoid hyperinflammation and secondary

necrosis (22). Apoptotic cells expose phosphatidyl serines

(PS), which can be recognized by PS receptors in

macrophages, allowing the uptake of the apoptotic cells

(39). This process leads to TGF-b production by the

macrophages, promoting control of inflammation (40).

There is evidence that human and murine CGD

neutrophils have diminished/delayed PS exposure. The

failure to ingest apoptotic cells is hypothesized to cause

immunization to self-antigens, leading, for example, to a

higher prevalence of lupus in CGD patients (3,41).

However, impaired phagocytosis of apoptotic cells by

macrophages can be reversed by interferon-gamma in a

nitric oxide-dependent manner (42).

Dysregulation of toll-like-receptor (TLR) expression.
The expression of some TLRs, like TLR-5 and TLR-9, can

be low in CGD patient neutrophils. This can contribute

to impaired pathogen recognition, phagocytosis, and

chemotaxis, leading to increased disease severity. On

the other hand, some innate immune receptors, such as

CD35, can be upregulated, which might be linked to the

increased frequency of autoimmune diseases (43).

Reduced degradation of phagocytosed particles or
apoptotic cells

A deficiency in the NADPH oxidase system in CGD

patient phagocytes leads to reduced degradation of

phagocytosed material or apoptotic cells, which implicates

either the remaining phagocytosed pathogen or apoptotic

neutrophils phagocytosed by macrophages, such as

pathognomonic eosinophilic crystals. The main conse-

quence is a persistent activation and hyperinflammation at

the cellular level (44).

Genetic polymorphisms
The trend to develop granulomatous complications in

CGD patients appears to be influenced by genetic

modifiers, as demonstrated by Foster et al. (45). The

authors studied a cohort of 129 CGD patients, and 7

candidate genes, each containing a physiologically

relevant polymorphism predicted to influence the host

inflammatory response, were selected for analysis.

Patients with genotypes associated with myeloperoxi-

dase, Fcc RIIIb, and Fcc RIIa receptors had the highest

risk for chronic gastrointestinal complications. Thus,

subtle genetic differences in molecules of innate immunity

seem to contribute to specific inflammatory responses in

CGD patients.

Final considerations

It seems that the amount of ROS generated by

neutrophils varies considerably from one individual to

the other, and this can be dependent on genetic variations

and other factors, such as nutritional uptake of pro-

oxidants and antioxidants, oxygen tension in a given

tissue, and the hormonal and cytokine environment

(46-48).

CGD patients usually exhibit a ROSlow inflammatory

response, characterized by a strong activation of oxygen-

independent killing mechanisms and an increase in

neutrophil influx. This kind of response tends to cause

more tissue damage and is inefficient in removing

phagocytized material, as evidenced by pigmented

macrophages. In addition, this kind of response can be

associated with autoimmune disease, as is often

observed in CGD patients.
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