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Abstract

Cannabinoid type 1 receptor (CB1R) inhibition tends to be one of the promising strategies for the treatment of obesity and other
related metabolic disorders. Although CB1R inhibition may cause adverse psychiatric effects including depression and anxiety,
the investigation of the role of peripheral CB1R on weight loss and related metabolic parameters are urgently needed. We first
explored the effect of rimonabant, a selective CB1R antagonist/inverse agonist, on some metabolic parameters in high fat-diet
(HFD)-induced obesity in mice. Then, real-time PCR and electrophysiology were used to explore the contribution of high
voltage-activated Ca2+ channels (HVACCs), especially Cav1.1, on rimonabant’s effect in skeletal muscle (SM) in HFD-induced
obesity. Five-week HFD feeding caused body weight gain, and decreased glucose/insulin tolerance in mice compared to those
in the regular diet group (Po0.05), which was restored by rimonabant treatment compared to the HFD group (Po0.05).
Interestingly, HVACCs and Cav1.1 were decreased in soleus muscle cells in the HFD group compared to the control group.
Daily treatment with rimonabant for 5 weeks was shown to counter such decrease (Po0.05). Collectively, our findings provided
a novel understanding for peripheral CB1R’s role in the modulation of body weight and glucose homeostasis and highlight
peripheral CB1R as well as Cav1.1 in the SM as potential targets for obesity treatment.
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Introduction

Insulin resistance (IR) tends to be an important pre-
dictor for various metabolic disorders, including obesity.
Skeletal muscle (SM) is a principal peripheral tissue in
maintaining glucose metabolism and in the development
of IR, accounting for the majority of total insulin-stimulated
glucose uptake. Fully understanding the mechanisms for
glucose uptake in SM remains a hot topic for the inves-
tigation of IR and metabolic diseases.

The importance of Ca2+ signaling in IR and related
metabolic disorders has been well established. A rapid
elevation in intracellular Ca2+ has been reported to regulate
glucose transporter type 4 (GLUT4) traffic and increase
surface GLUT4 level (1), which is associated with glucose
uptake in muscle and fat cells. Jang and other researchers
have demonstrated that decrease of the concentration of
free intracellular Ca2+ by a Ca2+ chelator restored glucose
infusion rate in SM in a high-fat diet (HFD) rat model (2,3).

Accumulating clinical studies have indicated that chron-
ic administration of rimonabant (SR141716, a selective
antagonist/inverse agonist of cannabinoid type 1 receptor

(CB1R)), significantly reduces body weight and improves
glycemic control and lipids in obese patients with type 2
diabetes (4–6). CB1Rs are widely expressed in the brain,
adipose tissue, liver, pancreas and skeletal muscle, which
are all closely associated with metabolic regulation (7–9).
In vitro studies have shown that reduced insulin-stimu-
lated glucose uptake by adipocyte-conditioned medium is
completely prevented by rimonabant in human skeletal
muscle cells (7). CB1Rs tend to be a promising target for
the management of type 2 diabetes. However, the mecha-
nism that mediates the regulation of CB1R on glucose
uptake in SM remains unclear.

Rimonabant has been shown to increase glucose uptake
in the isolated soleus muscle of obese mice (10). A recent
study has revealed that activation of protein kinase A
(PKA) and phosphatidylinositol-3-kinase (PI3K) signaling
accounts for rimonabant-induced glucose uptake eleva-
tion in SM cells (11). Potentiation of L-type high voltage-
activated Ca2+ channels (HVACCs) by glucagon-like
peptide-2 (GLP-2) has been revealed in a PKA-dependent
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manner, which contributes to glucose uptake by primary
cultured hippocampal neurons (12). Considering the key
role of HVACCs in Ca2+ signaling regulation and the
importance of Ca2+ signaling to obesity, we hypothe-
sized that CB1 receptor antagonists against body weight
gain and improves glucose homeostasis, which is at least
partly attributed to the restoration of HVACCs down-
regulation in skeletal muscle by HFD feeding.

Material and Methods

Animals
All experimental procedures were approved by the

Institutional Animals Care and Use Committee of Wuhan
University of China and adhered to International Animal
Welfare Legislation and Rules. A total of 39 male C57BL/
6J mice (6 weeks old) were used in this study. The mice
were housed under a 12-h light/dark cycle (lights on at
7:00 am) and fed the HFD (40% fat, Teklad Custom
Research Diet, TD 95217; Harlan, USA) or regular diet
(6.5% fat, #2920; Harlan, USA).

Chronic rimonabant treatment
Rimonabant or vehicle (0.1% Tween 80 in saline) was

administered to mice at a daily dose of 30 mg/kg body
weight (13) by oral gavage for 5 weeks. Body weight was
monitored once a week.

Intraperitoneal glucose tolerance test (IPGTT)
After 5 weeks on HFD, the mice were fasted overnight

and then received ip injections of D-glucose (2 g/kg) prior
to initiation of the glucose tolerance test modified accord-
ing to a previous description (14). Blood glucose was meas-
ured from a tail venous puncture at 0, 15, 30, 60, 90, and
120 min (Figure 1) using a glucometer. The area under the
glucose tolerance curve was analyzed.

Intraperitoneal insulin tolerance test (IPITT)
Like the glucose tolerance test, after a 6-h fast, mice

received ip injections of insulin (1 U/kg) prior to initiation
of the insulin sensitivity test (14). Blood was drawn at
serial time points for blood glucose measurement as de-
scribed above.

Soleus muscle cells preparation
Primary soleus muscle cells were cultured similar to a

previously study (15), with modifications. The mice from
the IPGTT or IPITT were used. Briefly, mice were deeply
anesthetized with isoflurane and the soleus was removed
from the hind legs of mice. The soleus was quickly placed
in ice-cold growth medium (GM) containing Dulbecco’s
modified Eagle’s medium: 4.5 g/L glucose, 4 mM L-
glutamine, 50 U/mL penicillin, 50 mg/mL streptomycin, and
20% fetal bovine serum. The soleus muscle was minced
into small pieces and forced through the tip of a 10-mL
pipette, and then incubated in 5 mL GM (serum replaced

by 195 U/mL collagenase type I) for 3 h at 37°C. Individual
cells were dissociated by triturating the tissue through a
fire-polished glass pipette and centrifuged at 300 g for
5 min at room temperature. After centrifuging 3 times,
the cells were planted on poly-D-lysine pre-coated glass
culture dishes (15 mm diameter) in GM with 20% fetal
bovine serum at 37°C in a water saturated atmosphere
with 5% CO2.

Whole-cell patch-clamp recording
Spherically shaped cells were selected for whole-cell

patch clamp recording, using an Axopatch 200B amplifier
(Axon Instruments, USA) and the output was digitized with
a Digidata 1332A converter and pClAMP 9 software (Axon
Instruments). Data were acquired at a sampling rate of
2 KHz. Data obtained from cells in which uncompensated
series resistance resulted in voltage-clamp errors 45 mV
were discarded. To measure the HVACCs in soleus mus-
cle cells, cells were held at –80 mV and depolarized from
–50 mV to +40 mV for 450 ms, in 10 mV increments with
5-s intervals. The amplitude of HVACCs was calculated as
peak negative current.

A recording microelectrode with a tip resistance of
2–4 MO was filled with the pipette solution: 120 mM CsCL,
0.1 mM CaCL2, 2.0 mM MgCL2, 10.0 mM EGTA, 10.0 mM
HEPES and 5.0 mM Tris-ATP, pH adjusted to 7.2 with
CsOH. The external solution contained: 110 mM Choline-
Cl, 20 mM TEACl, 5 mM BaCl2, 2.0 mM MgCl2, 10 mM
HEPES, and 20 mM D-glucose, adjusted to pH 7.4 with
CsOH. Ba2+ was used as the charge carrier when record-
ing HVACCs.

Real-time PCR analysis of Cav1.1 expression in
soleus muscle

Twenty-four hours after IPGTT or IPITT, sac and soleus
muscles were immediately collected from the mice and
frozen at –80°C. Total mRNA from the soleus muscle was
extracted using Trizol (Invitrogen, USA). cDNA was pre-
pared from 1 mg of RNA using SuperScript III First-Strand
cDNA Synthesis kit (Invitrogen). Quantitative real-time
PCR assay was performed according to published pro-
tocols (16). The primer pair for Cav1.1 was as follows:
Cav1.1-F, GTTACATGAGCTGGATCACACAG; Cav1.1-R,
ATGAGCATTTCGATGGTGAAG. The relative mRNA level
of Cav1.1 in each sample was first normalized to the level
of the housekeeping gene b-actin, which was 1.

Chemicals
Cell culture materials were purchased from GIBCO

(Life Technologies, USA). Rimonabant was purchased
from TOCRIS (Tocris Cookson, UK). All other chemicals,
unless otherwise stated, were from Sigma (USA).

Statistical analysis
Data are reported as means±SE. Statistical analyses

were carried out with SigmaPlot 12 (USA). The data were
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compared using one-way ANOVA with Duncan’s post hoc
test, two-way ANOVA with Turkey’s post hoc test, or
paired Student’s t-test. Po0.05 was considered to be sig-
nificant.

Results

HFD feeding caused obesity
Five weeks after the assigned diet, HFD-fed mice

showed a significant increase in body weight, compared with
control mice (10 mice in each group, Po0.05, Figure 1D).

HFD feeding decreased glucose and insulin tolerance
Blood glucose levels during the IPGTTwere significantly

higher in HFD-fed mice, compared with control mice (6 mice
in each group, Figure 1A), as evidenced by the increased
area under the curve for the glucose tolerance test (Po
0.05, Figure 1B). In line with a previous study (17), HFD-fed
mice showed an impaired insulin tolerance (Figure 1C).

CB1 antagonist reduced HFD-induced obesity
In line with the anti-obesity effect of rimonabant reported

before (18,19), 5-week daily administration of rimonabant
(n=14) caused a significant body weight loss in HFD-
fed mice, compared to untreated HFD-fed mice (Po0.05,
Figure 1D).

CB1 antagonist improved metabolic parameters in
HFD-fed mice

HDF mice that received a five-week daily administration
of rimonabant displayed an improved glucose tolerance
(10 mice for HFD+rimonabant group) and insulin toler-
ance (4 mice for HFD+rimonabant group, Figure 1A–C).

CB1 antagonist restored decreased Cav1.1 expression
in soleus muscle in HFD-fed mice

Real-time PCR revealed that the level of Cav1.1 in
soleus muscle was decreased in HFD-fed mice, com-
pared with control mice. Rimonabant increased Cav1.1

Figure 1. A, Glucose tolerance in mice fed a regular diet (control, n=6 mice), a high-fat diet (HFD, n=6 mice), or HFD+rimonabant
(n=10) (A and B). C, Insulin tolerance test results for control (n=4 mice), HFD (n=4 mice) and HFD+rimonabant (n=4 mice) groups. D,
Body weight of control (n=10 mice), HFD (n=10 mice) and HFD+rimonabant groups (n=14 mice) over a 5-week period. Results are
reported as means±SE. *Po0.05 HFD vs control, #Po0.05 HFD vs HFD+rimonabant (A, C and D, two-way ANOVA with Tukey’s
multiple comparisons. B, one-way ANOVA).
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levels in soleus muscle in HFD-fed mice, compared to the
untreated HFD group (Figure 2).

CB1 antagonist restored decreased HVACC in SM
cells in HFD-fed mice

The amplitude of HVACCs was significantly decreased
in soleus muscle cells in HFD-fed mice compared with
control mice (Po0.05). Furthermore, a 5-week rimona-
bant treatment significantly restored decreased HVACCs
in HFD-fed mice (Po0.05, Figure 3).

Discussion

In the present study, we found that mice on a 5-week
HFD had a body weight gain, and decreased glucose
tolerance as well as insulin tolerance, which were restored
by rimonabant treatment. Furthermore, HFD feeding de-
creased the expression levels of Cav1.1 and the function
of HVACCs in SM cells, which was restored by rimonabant
treatment. Our findings support our hypothesis that CB1R
blockade restores decreased HVACCs in SM in HFD-fed
mice, which at least partly contributes to CB1R blockade
induced-protection of body weight control and glucose
homeostasis in diet-induced obesity.

Accumulating evidence from clinical trials suggests
that CB1R blockade plays a protective role in controlling
body weight and glucose homeostasis in humans (20–23).
Rimonabant, a brain and peripheral CB1R antagonist/
inverse agonist, is one of the most recent drugs designed
to treat obesity and its use was approved in Europe in
2006. We found that a 5-week rimonabant treatment
reduced body weight gain induced by a HFD in mice.
Furthermore, rimonabant treatment improved glucose homeo-
stasis in HFD-fed mice, as evidenced by the results of IPGTT
and IPITT.

However, rimonabant may cause adverse psychiatric
effects including depression and anxiety (24–28). For this
reason, rimonabant was rejected by the Food and Drug
Administration in the United States and withdrawn from
the European market in early 2009. Nevertheless, it is still
too early to end hope for CB1R inhibition in obesity treat-
ment. There is evidence that the neutral CB1R-selective
antagonist without intrinsic activity (29), AM4113, has been
reported to have anti-obesity effects at doses that do not
induce symptoms of nausea and vomiting (29,30). One of
the most promising approaches is to develop CB1R anta-
gonists/inverse agonists selectively acting on peripheral
CB1R, and thus lacking psychiatric side effects (31–33).
In this regard, the understanding of the peripheral effects
of CB1R on obesity is urgently needed. Cav1.1 E1014K
knock-in mice (EK) are generated with a Ca2+ binding and/
or permeation defect in Cav1.1, which shows blocked Ca2+

binding, decreased Ca2+ influx, and decreased CaMKII
activity (34). EK mice display increased body weight and
impaired glucose and insulin tolerance relative to wide
type mice (35). These findings have important implica-
tions on the promising effects of Cav1.1 in controlling
body weight and glucose homeostasis. To test the periph-
eral effects of rimonabant on obesity, the changes of
expression level of Cav1.1 in SM were detected in different
feeding conditions including regular diet, HFD diet and
in HFD diet+rimonabant treatment. We found that the
HFD decreased the expression level of Cav1.1 in SM, and
5-week rimonabant treatment restored this decrease. Cav1.1
is one of the major HVACCs in skeletal muscles. HVACCs

Figure 2. Expression levels of Cav1.1 in soleus muscle in regular
diet (control; n=5), high-fat diet (HFD) and HFD+rimonabant
groups. Data are reported as means±SE. *Po0.05, HFD vs
control, #Po0.05, HFD vs HFD+rimonabant (repeated mea-
sures one-way ANOVA was used).

Figure 3. Changes in the amplitude of high voltage-activated calcium channels (HVACCs) in soleus muscle cells from regular diet
(control, A), HFD diet (B) and HFD+rimonabant (C) groups. D, Summary data of HVACCs amplitude in the three groups. Data
are reported as means±SE. *Po0.05, regular vs HFD; #Po0.05, HFD vs HFD+rimonabant (one-way ANOVA followed by Duncan’s
post hoc test).
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are decreased in coronary arteries smooth muscle in HFD
feeding (36). However, the effect of HVACCs in SM cells in
HFD feeding and rimonabant treatment is unclear. Using
whole cell patch clamp, we found that HFD decreased the
functional HVACCs as evidence by decreased amplitude of
HVACCs in SM cells, which was also restored by rimona-
bant. Thus, our findings suggest that HVACC, especially
Cav1.1 in SM cells, is a promising peripheral target for
CB1R antagonist obesity protection.

Rimonabant is an antagonist/inverse agonist for
CB1R. Whether rimonabant restores the effects of HFD
on body weight and glucose homeostasis as an antago-
nist or as an inverse agonist is controversial. There is
evidence that the neutral CB1R-selective antagonist with-
out intrinsic activity (29), AM4113, shares the ability of the
CB1R antagonist/inverse agonist to suppress body weight

gain as we reported here and in others reports (30,37). In
the contrary, other authors argue that CB1 inverse agonist
reduces food intake and body weight (38,39). Further, as
an inverse agonist, rimonabant also possibly acts on cal-
cium channels and in HVACCs increase (40). Rimonabant
appears to become a neutral antagonist at the K192A
mutant CB1R. Thus, the increased HVACCs in rimona-
bant treatment compared to the decreased HVACCs in
HFD mice may be due to the blockage of rimonabant on
CB1R activation-induced inhibition on HVACCs as an
antagonist. Thus, it is necessary to better understand the
role of CB1R antagonist or inverse agonist on anti-obesity
effects. In summary, we provided evidence that peripher-
ally targeting CB1R and its action on HVACCs, especially
Cav1.1 in the SM, could be therapeutically advantageous
for obesity treatment.
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