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Entropies Galore!
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The functional properties of the entropy gives rise to 6 possible types of thermodynamics.
Additivity or superadditivity or subadditivity are closely related to extensivity and this is
one of the characteristics used to distinguish the 6 types. We give examples (some are
somewhat academic) of all of these, except one. For this purpose we draw also on black hole
systems which have been proposed. Some of these systems have subadditive entropies, i.e.
they tend to fragment rather than clump. After proposing a new entropy function we raise
the problem of how to select from these entropy functions. Are some better than others?

I Introduction: Meaning of ex-
tensivity

Discussions of extensivity in thermodynamics go back

to the 1960ies [1]. There are several non-equivalent def-

initions of the extensivity of functions. They are [2, 3],

if x; y are three-dimensional vectors x = (x1; x2; x3),

f(x + y) = f(x) + f(y) (1)

f(2x) = 2f(x) (2)

f(�x) = �f(x) (� > 0) (3)

A statistical mechanical de�nition can be added. It

utilises ratios �1 � x1=x3; �2 � x2=x3 and states that

x�13 f(x) � f(�1; �2) (4)

where the limit x1; x2; x3 !1 (for �1; �2 �xed) is con-

sidered.

These de�nitions are not equivalent. For example,

f(x) = x21

.�
x21 + x22

� 1
2

satis�es (3), but not (1). However, if the assumption

P : x and y are parallel vectors

is added, then, indeed

(3) + P ) (1) :

Again, although (1) implies (2), (1) implies (3) only

if the assumption

C0 : the function f is continuous in its arguments

(5)

is added. Without it one can by addition not get much

beyond

nf(x) = f(nx) or mn�1f(x) = f(mn�1x) ; (6)

where m and n are positive integers. But with C0 one

can reach (3) from (1) via (6).

In this way a table of implications can be set up

for the four de�nitions of extensivity. It is then found

that for larger systems (4) implies the other three de�-

nitions. If C0 is also assumed, then (1) can join (4) in

implying the other three de�nitions.

Let us adopt (1) therefore as the de�nition of ex-

tensivity in this paper. This is in any case a usual

de�nition. A failure of (1) leads then to superadditiv-

ity if the left-hand side is greater than the right-hand

side, and to subadditivity if it is smaller.

II Types of thermodynamics [4]

I now recall the possibility of classifying all entropy

functions, and hence the associated types of thermody-

namics, into eight categories. These are generated by

three characteristics each of which may hold (S;H;C)

or may not hold (�S; �H; �C) (see Table I).
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Table I: Types of Thermodynamics

1. SHC 2. S �HC 3. SH �C 4. S �H �C

5. �SHC 6. �S �HC 7. �SH �C 8. �S �H �C

Here we have

Superadditivity S: S(x + y) � S(x) + S(y) [cf(1)]
Homogeneity H: S(�x) = �S(x) [cf(3)]
Concavity C: S (�x + (1� �)y) � �S(x) + (1� �)S(y)

d
Note that C is quite di�erent from C0, introduced

above. Also note that here x and y can stand for a

set of variables or for just one variable.

III Types of systems considered

The �rst type is inspired by the ideal gas and is spec-

i�ed by the entropy

S = k`n
�
aUvg

�
Nh
�

(7)

where k; a; g; h are positive constants and v is the

volume, U the internal energy and N the number of

particles in the gas. It turns out that this example can

generate three types of thermodynamics [4, paper II]:

h = g+1 : type 1:; H < g+1 : type 4:; h > g+1 : type 6:

(8)

Of course type 1 is the normal thermodynamics; type

4 reveals the purpose of the example:

For it was given as a simple classical analogue of the

thermodynamics of the Schwarzschild black hole, in

that it violates C but keeps S.

Second type: For a Schwarzschild black hole of mass

M , M0 being a constant, one knows that

S = k (M /M0 )
2
; (9)

Its thermodynamics is of type 4 as well. Indeed one can

show that this holds more generally [5] for

S = am� + b : (10)

where � > 0; � > 1 and b are positive constants, pro-

vided b is small enough (See [5], line 1 of Table II).

The thermodynamics of type 8, for which S; C and

H all fail, is rather rare. But it is found for special case

of (10), for example if (a; b > 0)

S = am2 + b ;

S =
a

m
+ b ;

S = �apm + b ;

as for certain dilatonic black holes [5].

As third type, consider a (1 + 1)-dimensional black

hole, as discussed in [6], for which

S = k`n (M /M0) (11)

In this case one �nds type 2 if M=M0 < 4 and type 6 if

M=M0 > 4.

In the second and third types there has in e�ect been

only one independent variable which of course simpli-

�es the analysis. Fig. 1 gives a summary of the results

in the form of a Venn diagram.

It is seen from Fig. 1 that no example has been

given of a thermodynamics of types 3, 5 and 7. Types

3 and 5 are actually logically impossible because

S+H! C and C +H! S :

For functions which depend on one independent vari-

able only we know also ([5]) that H! S;C which rules

out thermodynamics of type 7. We still need an exam-

ple of this type. It must involve several independent

variables.

Broadly speaking, if S holds, then two identical sys-

tems will tend to \clump" together if they are given a

chance, for this way the entropy goes up. This holds

for a thermodynamics of types 1,2 and 4. However if S

fails, as it does in thermodynamics of types 6, 7 and 8,

then a system increases its entropy by splitting up into

separate systems. This is \fragmentation" [6].
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Figure 1. Venn diagram for thermodynamic types.

IV Entropy choices

The non-extensive nature of the entropy can be en-

capsulated in a function Y which vanishes in the case

of an extensive entropy:

S(A +B) � S(A) � S(B) = Y S(A)S(B)

where A andB represent the part systems under consid-

eration [7]. Let us add super�xes R;S; T; U for Renyi,

Shannon, Tsallis and a new entropy. Let Q � �pqi ,

where the pi are the probabilities of the various states

of the system involved, and let q be a real constant.

Then we can construct a table of matching entropies

and Y -functions [8]:

c

S(R)(A) =
k

1� q
`n Q Y (R) = 0 (12)

S(S)(A) = �k
X
i

pi ln pi Y (S) = 0 (13)

S(T )(A) =
k

1� q
(Q � 1) Y (T ) =

1� q

k
(14)

S(U)(A) =
k

1� q

�
1� 1

Q

�
Y (U) =

q � 1

k
(15)

d

For each S one has lim
q!1

S(i)(A) = S(S)(A), and the new entropy satis�es

S(U)(A) = S(T )(A)=Q :
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A great deal of work has been done using the Tsallis

expression S(T ). The object was to �nd various �ts to

experimental data and limits on values of q, or, more

precisely, on the amount by which q is likely to di�er

from the Shannon value of unity. In the case of the cos-

mological background radiation, for example, the best

q value lies very close to unity [9]:

jq � 1j � 10�4 � 10�5 :

Physical reasons for departures from simple laws of

any kind always exist, since it is well-nigh impossible

to take account of all interactions. There is always a

further stage! In this particular case one hopes to get

a grip on the long-range gravitational e�ects by going

from the Shannon to the Tsallis entropy.

The are, of course, alternatives to (14). Although

(15) is a new suggestion [8], people have had the ques-

tion of uniqueness at the back of their minds even

though there must by now be something like 40 appli-

cations of the Tsallis entropy. That is why interesting

uniqueness theorems have appeared [10].

Still, alternative entropies can be constructed, based

on the process that yielded (15) and others [11]. How

do we chose among them? Is the Tsallis entropy the

only reasonable contender? And if so, why is this so?

Is there a general signi�cance of the parameter q? Some

future studies could usefully be devoted to these ques-

tions.
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