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Electromagnetic ion cyclotron waves in the plasma depletion layer measured by Wind on three inbound passes
of the magnetosheath near the stagnation streamline are modeled using theoretical results from Gnavi et al., J.
Geophys. Res., 105, 20973, 2000. The kinetic dispersion relation in a plasma composed of electrons, protons,
and α particles, is solved with each species modeled by a bi-Maxwellian distribution function with parameters
taken from observations, where available, and from average values found in the literature. While one pass was
under substantially high solar wind dynamic pressure (∼ 6.4 nPa), the other two passes were under normal
dynamic pressure at 1 AU (∼ 2.2 nPa). The presence of electromagnetic ion cyclotron waves in the terrestrial
plasma depletion layer under normal dynamic pressure is documented and analyzed for the first time. The
power spectral density of the magnetic fluctuations transverse to the background field, using high resolution (∼
11 samples/s) data from the Magnetic Field Investigation, is obtained for the inner, middle and outer regions
of the plasma depletion layer. The analysis of spectra and comparison with theory is extended to the normal
dynamic pressure regime. The observations show that at the inner plasma depletion layer position the spectral
power density weakens as the dynamic pressure decreases, and that the frequency range of emission shifts
downward with diminishing pressure. Using bipolytropic laws for the anisotropic magnetosheath, we argue that
the effect of a reduction of Pdyn is to lower Ap, thereby weakening the driver of EICWs leading to marginally
bifurcated spectra and weaker EICW activity in the PDL under typical conditions. Qualitative and in some
cases quantitative agreement between theory and data is very good.

1 Introduction

The theory of the flow of the magnetosheath around the
magnetosphere developed by Spreiter and coworkers in the
sixties has been the cornerstone of the subject and very suc-
cessful. It gave origin to the Convected Field Gas Dyna-
mic (CFGD) model, which is the weak magnetic field limit
of magnetohydrodynamics. This simplification gives good
results for the stand-off distance of the bow shock and the
general geometry of the field in the magnetosheath. Near
the magnetopause the field starts to increase and to pile up
against the magnetopause, particularly when the field is not
removed by reconnection. This pile-up vitiates the basic as-
sumption of the CFGD model. This feature gives a possi-
ble characterization of the plasma depletion layer (PDL) as
a thin layer dependent on the Alfvén Mach number where
the magnetic field increases and simultaneously the density
decreases [1].

The PDL can also be characterized by its wave activity.
Anderson, Fuselier and coworkers [2] have shown that the
PDL has a peculiar wave activity: the electromagnetic ion
cyclotron waves (EICWs). These are transverse waves, con-
trasting strongly with the compressional mirror modes ubi-
quitous in the main body of the magnetosheath outside the
PDL. Until now their study has been carried out under com-
pressed magnetosphere conditions, rather an unusual situa-
tion, based on data recorded by AMPTE/CCE. This space-

craft sampled the magnetosheath when the solar wind dyna-
mic pressure was Pdyn ≥ 5.2 nPa. The more typical condi-
tion of lower Pdyn was not investigated. The first theoreti-
cal study was developed by Gnavi, Gratton, and Farrugia [3]
using a statistical data analysis of Phan et al. [4], characte-
ristic of normal pressures.

In this paper we explore EICWs in the PDL for normal
dynamic pressure values not previously considered. The
theory of Gnavi, Gratton, and Farrugia is confronted with
data from three passes across the magnetopause by Wind in
1994. These passes are most appropriate for the study of
PDL wave activity since they were very close to the stagna-
tion streamline, where the influence of the field on the flow
(and hence the strength of depletion) is most pronounced.

The change of EICW spectral activity from high to nor-
mal dynamic pressure is examined and an explanation pre-
sented for several observed features, using the theory of gy-
romagnetic emission in a multi-component plasma. In the
discussion section, an argument showing how a reduction of
solar wind Pdyn leads to a significant weakening of EICW
activity is presented.

2 Theory

In the present model the plasma is composed of protons,
alpha particles and electrons having bi-Maxwellian distribu-
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tion functions that are expressed as
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T‖ and T⊥ denote the parallel and perpendicular tempera-
tures, respectively. The spatio-temporal dependence of the
waves is exp(i[kz − ωt]), with the z axis aligned along the
background magnetic field B0; k is the wave number, and
ω = ωr + iγ the complex frequency. Quantity ωr = Re(ω)
is the angular frequency of the wave, and γ = Im(ω) is the

growth (γ > 0) or damping (γ < 0) rate. The species will be
indexed by s (s = p, α, e, for protons, alphas, and electrons,
respectively). The relative density of the αs to the protons
will be denoted by ηα. For each component s the quantities
w‖,s =

√
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2kBT⊥,s/ms are the
thermal speeds parallel and perpendicular to the magnetic
field, respectively.

The linear dispersion relation, according to the Vlasov
self-consistent field model, for left hand polarized EICWs,
propagating along the magnetic field lines (
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where k stands for k‖, for simplicity, and the sum ex-
tends over the species. The thermal anisotropy is As =
[(T⊥/T‖)s−1], ωp,s is the plasma frequency and Ωs the gy-
rofrequency of species s. Finally, Z0 is the modified plasma
Zeta function [5].

An ion (proton or alpha particle) moving with a particu-
lar velocity component vs

‖ (s = p, α) along the field line,
can only emit or absorb EICWs when the following reso-
nance condition is satisfied [6]

ωr(k) − kvs
‖ = Ωs (s = p, α), (3)

so that the particle gyrates in concert with the transverse
electric field of the wave at the Doppler-shifted frequency
observed in the moving frame of the ion.

For bi-Maxwellian distribution functions, the condition
for wave growth, i.e., that there be more emitters than absor-
bers of a given ion species at any given frequency ωr(k) can
be written as

df0,s
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where

df0,s

dv‖
(v∗‖) ∝

[
Ωs

(
1

w2
‖,s

− 1
w2

⊥,s

)
− ωr(k)

w2
‖,s

]
f0,s(v∗

‖).

(5)
Here, the function f0,s(v‖) is the bi-Maxwellian averaged
over the perpendicular velocity v⊥, and v∗

‖ is the peculiar
vs
‖ value that satisfies equation 3, v∗

‖ = (ωr(k) − Ωs)/k,
for each species. When inequality 4 is reversed, the wave is
damped instead.

As can be seen from 5, the number of emitters (or ab-
sorbers) at a given frequency of the wave, is proportional
to

exp[−
(
(ωr(k) − Ωs)2/k2w2

‖,s

)
], (6)

i.e., to the number of resonant ions. Equation 5 gives a
frequency limit, ωl

s, for each species, that separates the
range of ωr(k) in which the ions are predominantly emit-
ters, ωr < ωl

s, from the range ωr > ωl
s, where the particles

of that species absorb energy from the wave instead. The
frequency limit for each species is given by

ωl
s =

As

As + 1
Ωs. (7)

Since in our case As > 0 the frequency limit ωl
s is smaller

than the gyrofrequency of each ion component.
In the low frequency band both p and α contribute to the

growth of the waves, with a negligibly small growth rate at
very low frequencies in the Alfvén wave regime. The rate of
growth increases for higher frequencies until the ωl

α limit is
reached. The protons are emitters until they reach their limit
frequency ωl

p. Above that value there is absorption only.

3 PDL data measured by Wind near
the stagnation streamline

The data available for the present analysis are magnetic fi-
eld and proton observations made by Wind on three inbound
low-latitude magnetosheath passes on December 24, No-
vember 30, and December 12, 1994, within one hour of lo-
cal noon. These are: the GSM Bx, By , Bz components of
the magnetic field, the total field, the proton density, tem-
perature, and bulk speed, the temperature ratio Tp,⊥/Tp,‖,
and the proton plasma betas parallel and perpendicular to
the magnetic field. Electron parameters have only a minor
effect on EICW excitation [3] and are available only on the
December 24, 1994 pass. They indicate that in the magne-
tosheath the electron temperature is approximately ten times
lower than the proton temperature. Also, the electron tempe-
rature ratio Te,⊥/Te,‖ ∼ 1.1. Similar characteristics will be
assumed for those ratios in all three passes. The magnetic
field and plasma observations were made by the Magnetic
Field Investigation [7] and the 3D Plasma Analyzer [8] on
Wind, and are given at a resolution of 3 s and 51 s, respec-
tively. For the analysis of magnetic field fluctuations in the
PDL the 0.09 s resolution magnetic field data are used.
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TABLE 1. Parameters for the computation of theoretical growth and damping rates.

Date Region Interval (UT) Ap βp,‖ f p L1 L2
Nov. 30, 1994 Inner 21:20-21:23 1.25 0.30 0.77 0.44 0.25

Middle 21:13-21:16 1.04 0.69 0.62 0.32 0.19
Outer 21:05-21:08 0.66 1.13 0.56 0.22 0.15

Dec. 12, 1994 Inner 13:52-13:55 0.98 0.66 0.68 0.33 0.21
Outer 13:46-13:49 0.80 0.83 0.66 0.29 0.19

Dec. 24, 1994 Inner 11:22-11:27 1.61 0.24 1.44 0.89 0.50
Middle 11:16-11:21 1.05 0.51 1.29 0.66 0.40
Outer 11:06-11:11 0.81 0.84 1.14 0.51 0.33

4 Spectral Analysis

In the present analysis, the PDL is divided into regions. The
one that is closest to the magnetopause will be called inner
and the region that is farthest from it outer. In two scena-
rios, there is a third region, called middle, located between
the inner and outer ones. In Table 1 the proton parameters
for the different regions are given. Ap is highest in the inner
region and lowest in the outer one. The opposite situation
holds for β‖.

The power spectral density (PSD) for the intervals is
shown in Figs. 1-3. Plotted are the left-hand (heavy so-
lid line), right hand (dot-dashed line) and parallel (dashed
trace) PSDs. The vertical dot-dash lines in each panel give
the proton and α-particle gyrofrequencies. The vertical li-
nes labeled L1 and L2 (L1 > L2) refer to the theoretical
limiting frequencies discussed in section 2. Thus, below fre-
quency L2, αs give up energy to the wave and so do protons
below L1. Above the respective L-line alpha particles and
protons absorb energy from the wave. Between L2 and L1
there is competition between alpha absorption and proton
emission. The direction of energy exchange depends on the
alpha concentration and on the value of the respective βs.
Figs. 1-3 show that frequencies L1 and L2 shift downwards
from inner to outer PDL regions.

4.1 December 24, 1994

In this pass the PDL is divided into three regions: outer
(11:06 - 11:11 UT), middle (11:16 - 11:21 UT), and inner
(11:22 - 11:27 UT) as presented in Figure 1.

There are two peaks in the outer region. One at 0.25 Hz
(< L2) and a weaker peak at 0.42 Hz (< L1).

The main activity in the middle region is from 0.2 Hz to
0.4 Hz (< L2), with a minor proton contribution just below
the L1 frequency.

For the inner region, emission is due mainly to alphas
and is strong from 0.25 Hz to 0.5 Hz (≤ L2). Above the
alpha gyrofrequency and below L1 there is a weaker emis-
sion band from the protons. Above L1 there is some weak
activity.

Temperature anisotropy values on December 24, 1994,
are the highest of the three passes.

4.2 November 30, 1994

The PDL is divided for this pass into outer (21:05 - 21:08
UT), middle (21:13 - 21:16 UT), and inner (21:20 - 21:23
UT).

Figure 2 shows the power spectral density in the three re-
gions of the PDL on November 30, 1994, in the same format
of Figure 1. With respect to December 24, there is weaker
EICW activity on November 30, and it takes place at lower
frequencies.

For the outer region the power lies in frequencies lower
than the alpha gyrofrequency. For higher frequencies there
is a sharp drop in power.

In the middle region power is also mainly on the lower
frequencies. The power spectral density between L1 and L2
is lower than in the outer region due to the prevailing lower
βp,‖ (see Table 1).

In the inner region there is one local power peak below
the alpha resonance at 0.25 Hz near L2, and a weaker one at
0.43 Hz near L1. The first one is mainly due to the alphas
and the one at higher frequencies to proton emission.

From the outer region to the inner, between L2 and L1
the PSD decreased in accordance with the change in βp,‖
from 1.13 to 0.3.

4.3 December 12, 1994

For this pass only two regions have been selected due to a
marked time variability of the data. The outer region is in
the interval 13:46 – 13:49 UT and the inner one from 13:52
to 13:55 (see Figure 3).

For the outer region the power resides well below the
alpha gyrofrequency, in the range 0.1 to 0.25 Hz. There is a
continuous decrease in power.

In the inner PDL the power is mainly at frequencies less
than 0.21 Hz (= L2). There is a weaker band centered
around L1 (this value is very close to the alpha gyrofre-
quency).
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Figure 1. Power spectral density (nT2/Hz) vs. frequency (Hz) in
the inner, middle and outer regions of the PDL (from top to bottom)
on December 24, 1994. Left-hand (heavy solid line), right-hand
(dot-dashed line) and parallel (dashed trace) PSDs. The vertical
dot-dash lines are drawn at the proton and α-particle gyrofrequen-
cies. The vertical lines L1 and L2 mark the theoretical limiting
frequencies discussed in the text.

5 Growth and damping rates: theory
and observations

It is important to note that there is no straightforward re-
lation between the theoretical values describing the linear
stage of the instability and the observed values that could be
related to saturation effects in a nonlinear regime. Neverthe-
less, the results from the linear theory should be indicative
of the ranges where growth or damping takes place. Linear
mechanisms (such as alpha-proton differential drifts or high
Aα with low βp,‖ effects.) that close gaps in emission, thus
producing continuous spectra, have been discussed in Ref.
3. Also, nonlinear wave interaction could produce cascades
towards lower frequencies and new waves in ranges forbid-
den by the linear theory. Therefore, full agreement between
theory and observations may not occur.

Figures 4-6 show the results of the numerical solutions
of the dispersion relation in a log-log representation. Growth
(solid lines) and damping rates (dashed lines), normalized to
the proton gyrofrequency (Ωp), are plotted versus frequency,
f , in Hz. The low frequency range of EICWs is the undam-
ped Alfvén wave regime.

The numerical values used in the calculations are those
in Table 1. Quantities Ap and βp,‖ are averages over the
subdivisions of the PDL taken from Wind measurements.
Quantity ηα is assumed to be 0.04, a typical solar wind va-

lue. The values of Aα and βα,‖ are taken from the literature.
We set Tα/Tp=4 ([9] and references therein). For Aα, we as-
sume Tα,⊥/Tα,‖=1.25Tp,⊥/Tp,‖, which agrees approxima-
tely with values measured by AMPTE/CCE [10]. Electrons
are assumed to be isotropic and Tp/Te=10.

Figure 2. Similar to Figure 1 but for November 30, 1994.

Figure 3. Power spectral density (nT2/Hz) vs. frequency (Hz) in
the inner and outer regions of the PDL on December 12, 1994.

In all passes, both theory and data show a shift of the
active band to lower frequencies as the PDL is crossed from
inner to outer region.
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The forthcoming detailed comments will show that there
is a reasonable agreement between the linear theory of
EICWs emission and measured power spectral density for
both high (December 24) as well as normal (November 30
and December 12) dynamic pressure.
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Figure 4. Growth rates vs. frequency (Hz) predicted by the linear
theory for the three regions of the PDL on December 24, 1994.
Solid curves denote growth and dashed curves represent damping
rates.
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Figure 5. Similar to Figure 4 but for November 30, 1994.

5.1 December 24, 1994

Inner PDL: Figure 4 presents the theoretical results. Two
activity ranges are present, separated by a band of damped
frequencies. The alpha emission extends from ∼ 0.35 to
0.5 Hz, with a peak at 0.42 Hz. There is good agreement
with the observed results in the top panel of Figure 1. The
theoretical peak due to proton emission at 0.80 Hz is also
observed in Figure 1 just below L1. The bifurcated spec-
trum presented by the theory is weakly reflected in the data.
Above ∼0.85 Hz the damping is very strong.
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Figure 6. Similar to Figure 4 but for the inner and outer regions of
the PDL on December 12, 1994.

Middle PDL: According to theory there is a broad alpha
peak, centered at 0.34 Hz, and a narrow proton peak at 0.58
Hz. In Figure 1, middle panel, there is a local enhancement
at those frequencies. The gap predicted by theory is reflected
in the observed PSD as a change in the slope of the spectrum
just above the L2 frequency. Above 0.62 Hz, the theoreti-
cal damping is very large and the measured PSDs are very
small.

Outer PDL: A continuous band of activity extending
from 0.16 to 0.48 Hz, with lower growth rates around 0.34
Hz is predicted. The corresponding features in the observa-
tions are the two peaks at 0.26 Hz and 0.20 Hz (Figure 1,
bottom panel). Measured PSDs are very small above 0.5 Hz
with the exception of a weak peak above L1 not predicted
by theory.

5.2 November 30, 1994

Inner PDL: The α range is wide with a maximum at 0.24 Hz,
while the proton range is very narrow and located at 0.38
Hz (see Figure 5). In the observations the PSD shows local
enhancements near these frequencies (Figure 2, top panel).
The theoretical value of the frequency of the proton peak is
0.05 Hz lower than the observed one. In the range between
0.26 and 0.37 Hz where theory predicts damping, the obser-
ved PSD also declines.

Middle PDL: In the middle PDL, a continuous active
band stretches from 0.1 to 0.3 Hz. Above this range the
damping rate increases very rapidly Two maxima are located
at 0.15 Hz and 0.27 Hz, correponding to alpha and proton
emissions, respectively. The maxima are at lower frequen-
cies with respect to the inner PDL case. A similar trend, ap-
pears in the observations (see Figure 2, middle panel), where
maxima are located at 0.15 and 0.22 Hz.

Outer PDL: The theoretical results for the outer PDL re-
presented in Figure 5 show a continuous band in the range
from 0.1 to 0.22 Hz, below the α gyrofrequency, fα. For
higher frequencies the damping is extremely high. A simi-
lar situation appears in the power spectral density (Figure 2,
bottom panel) where the observations show a sharp power
decrease at 0.25 Hz.

There is very good agreement between theory and obser-
vations for the low pressure pass on November 30. For all
three PDL regions, activity is shifted towards frequencies
lower than those of the high Pdyn pass on December 24.
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5.3 December 12, 1994

Inner and Outer PDL: As seen in Figure 6 the theoretical
growths for inner and outer regions are similar and both
show continuous activity at low frequencies. In the inner
region, the emission reaches up to 0.32 Hz (slightly above
fα). In the outer PDL the active region ends at 0.28 Hz, far
from the alpha resonance, exactly as in the data. Activity at
higher frequencies is heavily damped according to theory.

6 Discussion

6.1 Effect of Pdyn on EICW activity in the
PDL

The observed values of the temperature anisotropy Ap on
the Wind passes given in Table 1 are significantly lower than
those of the AMPTE/CCE measurements and the correspon-
ding βp,‖ are higher (compare our Table 1 with Table 2 of
Ref. 11). A semi-quantitative argument is presented to show
that near the stagnation streamline, the lower Ap is due to the
lower Pdyn.

Studying the anisotropic magnetosheath, Hau et al. [12]
and Farrugia et al. [13] have empirically established that
near the subsolar region the MHD equations can be closed
by a double-polytropic law of the form

p⊥
ρ

= c⊥,
p‖/B1/2

ρ3/2
= c‖,

where c⊥, c‖, are constants. These equations do not con-
serve the magnetic moment of the ions as an adiabatic inva-
riant, because of the high frequency magnetic fluctuations in
the magnetosheath. It follows that

T⊥
T‖

=
p⊥
p‖

=
c⊥
c‖

√
B

ρ
. (8)

On the other hand, a well known consequence of the MHD
frozen-in field condition, stated in a Lagrangian description,
can be written as

B
ρ

= (
B
ρ

)0 · grad(s), (9)

where s is the Lagrangian displacement (see, e.g., Ref.14).
The last equation leads to

(B
ρ )2

(B
ρ )1

=
δl2
δl1

, (10)

which describes the intensification of the magnetic field by
the stretching of magnetic field lines from position 1 to posi-
tion 2. Here δl1 is the distance between two plasma elements
on a given magnetic field line, which is mapped into δl2 as
the plasma flow is diverted around the magnetosphere; B1,2

denote the magnetic field strength at positions 1 and 2, res-
pectively [14].

Any given segment of a magnetic field line, mapped by
the plasma motion near the stagnation streamline, is stret-
ched more for high than for low Pdyn values. In fact, the ra-

dius of curvature of the frontside magnetopause at the sub-
solar point is larger when Pdyn is smaller. In the schema-
tic of Figure 7 the magnetopause is sketched for two dif-
ferent values, (Pdyn)s, (Pdyn)h, where s stands for small
(the left-hand sketch) and h for high pressure (the right-hand
sketch). The magnetopause appears as a blunter obstacle to
the flow when the pressure is low. Two plasma elements
are shown on the near stagnation streamlines, separated by
a distance δl1. On being diverted past the magnetopause,
the distance between the plasma elements δl2 is larger for
the higher pressure, i.e., δl2,h > δl2,s, because the speed
of the diverted plasma is higher. This is in agreement with
the known fact that the magnetic field pile-up close to the
magnetopause becomes stronger for compressed conditions
(compare, for example, the magnetic field strength at the
subsolar magnetopause on December 24, when the pressure
is high, with that on November 30, when the pressure is low,
Figs. 1 and 2).

Figure 7. A schematic showing a compressed magnetopause on the
right and a dilated one on the left. Two plasma elements at a dis-
tance δl1 are mapped to two different distances δl2s and δl2h along
the off-solar magnetopause, the one for the compressed magneto-
pause being longer.

Applying the empirical relation, Eq.8, we finally obtain

(T⊥
T‖

)h

(T⊥
T‖

)s

= (
δl2,h

δl2,s
)1/2. (11)

Hence,
(T⊥

T‖
)h

(T⊥
T‖

)s

> 1, (12)

when
(Pdyn)h > (Pdyn)s. (13)

The temperature ratio (and hence the thermal anisotropy)
thus decreases with decreasing Pdyn. At lower values of
Pdyn the EICW activity is expected to be weaker than at
higher values, for at least two reasons. (1) By producing
lower Ap values, a smaller Pdyn generates conditions of
smaller growth rates by weakening their driver (i.e., the free
energy available). Further, excitation is pushed to lower fre-
quencies, because frequencies L1 and L2 (measured in units
of fp) are shifted downwards. (2) Close to the (low-shear)
magnetopause, Pdyn ∝ B2 (by pressure balance). There-
fore, a smaller Pdyn implies a smaller fp (= qB/2πmc),
which brings an additional diminution of the absolute va-
lues of the growth rates (∝ fp) and the further shift of the
EICW activity to lower frequencies).
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6.2 Classification of magnetic spectral types

AMPTE/CCE studies referred to compressed magnetosphe-
ric conditions with a solar wind Pdyn equal to, or larger than,
the one of the December 24, 1994 example. On the other
hand, November 30, and December 12, 1994, passes were
under typical Pdyn at 1 AU (∼ 2.2 nPa). Therefore, relevant
differences must appear in a comparison of the observational
results of the present study with those of Refs. 11 and 15.
These authors classified the magnetic spectral types in the
magnetosheath. Inside the PDL they identified bifurcated
(BIF), continuous (CON), and low (LOW) spectra. The ave-
rage values of the parameters Ap and βp,‖ characterizing the
categories (see Table 2 in Ref. 11) are: Ap = 2.14, 0.96, and
0.83; βp,‖ = 0.22, 1.11, and 1.25 for BIF, CON, and LOW
respectively. This shows a systematic decrease in Ap and
a corresponding increase in βp,‖ from BIF to LOW, which
according to Anderson et al. [11] implies a spatial classifi-
cation. Similar criteria, applied to the spectra discussed in
this study give: December 24 (INNER) and November 30
(INNER) are (marginally) BIF spectra; December 24 (MID-
DLE and OUTER) and November 30 (MIDDLE) are CON
spectra; November 30 OUTER and December 12 (INNER
and OUTER) are LOW spectra.

As a consequence of the results in section 6.1 and the
comparison with Ref. 11, it is reasonable to predict that
under normal solar wind pressure there will be a prepon-
derance of spectra of the CON and LOW types in the PDL,
and few BIFs, if any. Also EICW activity in the PDL weaker
than under compressed conditions is expected.

7 Conclusions

The presence of EICWs in the terrestrial PDL under normal
(∼ 2.2 nPa) solar wind dynamic pressure has been documen-
ted and analyzed for the first time. The analysis of EICW
spectra and theory has been extended to this more typical
Pdyn regime.

The agreement of the power spectral densities with theo-
retical predictions was qualitatively, and at times even quan-
titatively, very good. Theory and observations agreed on fre-
quency where the activity peaks, the width of active bands,
and the limiting frequencies L1 and L2. The discrepan-
cies encountered in some cases may have diverse origins.
Nonlinear effects such as parametric decays and turbulent
cascading to lower frequencies were not studied. Also, the
assumption of spatial uniformity of the plasma properties
inherent of the infinite plasma model is not realized in prac-
tice.

The dependence of properties of EICW emission on the
front side of the magnetopause on the dynamic pressure of
the solar wind is analyzed. Thus, a microscopic process - ion
gyromagnetic radiation - is seen to be modulated by a glo-
bal quantity like Pdyn. Also, a semi-empirical explanation
for the direct correlation between Pdyn and Ap, the thermal
anisotropy, in the stagnation point flow region of the PDL is
presented.

Gnavi, Gratton, and Farrugia [3] were the first to propose
a subdivision of the PDL that exhibits evolutionary trends of
the EICW excitation. Under conditions of normal Pdyn (∼ 2
nPa) the power spectral density (PSD) of the waves is mainly
of the CON and LOW type. In compressed magnetospheres

(Pdyn much larger than normal) instead, BIF type spectra
prevail in the inner part of the plasma depletion layer.

The subdivisions introduced in the analysis reflect bona
fide structural categories of the PDL in space, each one de-
fined by a corresponding type of dominant wave activity,
which persist in the range of solar wind pressures explored.

It is predicted that under normal solar wind pressure
there will be a preponderance of spectra of the CON and
LOW types in the PDL, and few BIFs, if any. Also, weaker
EICW activity in the PDL than under compressed conditions
is expected.
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