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Corrections to the Entropy in Higher Order Gravity
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Thermal corrections to the entropy of black holes in the Lovelock gravity are calculated. As the thermo-
dynamic behavior of the black holes of this theory falls into two classes, the thermodynamic quantities are
computed in each case. Finally, the logarithmic prefactors are obtained in two different limits.

I. INTRODUCTION

During the late1960’s and early1970’s an intense research
activity in the field of black hole physics lead to the discovery
of the laws of black hole mechanics. Soon, it was realized a
striking resemblance with the laws of thermodynamics[1, 2].
In this context Bekenstein proposed that the entropy in black
holes is proportional to the surface area of the event hori-
zon. Moreover, Hawking found that black holes generate also
a thermal radiation, due to quantum pair production in their
gravitational potential gradient and the presence of the event
horizon. The temperature of this radiation is given in terms of
the surface gravity at the event horizon,TH = ~κ/2π. An im-
mediate consequence of this identification of the temperature
is that the proportionality constant between the entropy and
the area is fixed,SBH = A/4G.

Althought this knowledge about the black hole thermody-
namics is well established, we do not have a complete an-
swer to this question in the statistical mechanics framework.
However, there has been a substantial progress in identify-
ing the microscopic degrees of freedom responsible for the
Bekenstein-Hawking entropy. This advance has come from
string theory[4] and loop quantum gravity[5]. In the case of
string theory it is present a massless spectrum including the
graviton, and at low energy it gives supergravity effectives the-
ories. Black Holes therefore appear as classical solutions of
low energy string theory.

The next step in this line of research has been the study
of the leading correction to entropy. A common characteris-
tic of the different approaches is the proportionality tolnSBH
[6],[7],[8]. However, the proportionality constant does not ex-
hibit the same universality. It can be shown that logarithmic
corrections to thermodynamic entropy arise in all thermody-
namic systems when small stable fluctuations around equi-
librium are taken into account[9]. The stability condition is
equivalent to the specific heat being positive.

On the other hand the study of the thermodynamic proper-
ties of black holes has been extended to higher order gravity
theories[10]. Within these theories there is a special class of
gravitational actions, of higher order in the curvature, known
as Lovelock gravity [11]. Lovelock gravity is exceptional in
the sense that although it contains higher powers of the curva-
ture in the Lagrange density, the resulting equations of motion
contain no more than second derivatives of the metric. It is
also a covariant and ghost free theory as it happens in the case

of Einstein’s General Relativity.
An important result that was found in the thermodynamic

context is that the area law is a peculiarity of the Einstein-
Hilbert theory [12]. These facts motivates a deeper study of
the thermodynamics of the black hole solutions of such exotic
theories [13][14],[15]. In this paper we will study the correc-
tions to the entropy for the black holes solutions of Lovelock
gravity. We shall first briefly review such a formulation.

II. HIGHER DIMENSIONAL GRAVITY

The Lanczos-Lovelock action is a polynomial of degree
[d/2] in the curvature, which can be expressed in the language
of forms as [12]

IG = κ
Z [d/2]

∑
m=0

αmL(m), (1)

whereαm are arbitrary constants, andL(m) is given by

L(m) = εa1···adRa1a2 ···Ra2m−1a2mea2m+1 ···ead , (2)

with Rab being the Riemann curvature two-forms given by

Rab = dωab+ωa
cwcb . (3)

Herewab are the spin connection one-forms andea the viel-
bein. A wedge product between forms is understood through-
out.

The corresponding field equations can be obtained varying
with respect toea andwab. In [12] the expression for the co-
efficientsαm was found requiring the existence of a unique
cosmological constant. In such a case these theories are de-
scribed by the action

Ik = κ
Z k

∑
p=0

ck
pL(p) , (4)

which corresponds to (1) with the choice

αp := ck
p =





l2(p−k)

(d−2p)

(
k
p

)
, p≤ k

0 , p > k
(5)

for the parameters, where1≤ k≤ [(d−1)/2]. For a given di-
mensiond, the coefficientsck

m give rise to a family of inequiv-
alent theories, labeled byk which represent the highest power
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of curvature in the Lagrangian. This set of theories possesses
only two fundamental constants,κ andl , related respectively
to the gravitational constantGk and the cosmological constant
Λ through

κ =
1

2(d−2)Ωd−2Gk
, (6)

Λ =− (d−1)(d−2)
2l2 . (7)

For black hole solutions that are asymptotically flat we con-
sider the vanishing cosmological constant limit case. When
l → ∞ the only non-vanishing terms in Eq(4) is the kth one;
therefore the action is obtained from Eq(1) with the choice of
coefficients

αp := c̃k
p =

1
(d−2k)

δk
p , (8)

in this case the action reads

Ĩk=
κ

(d−2k)

Z
εa1···adRa1a2 ···Ra2k−1a2kea2k+1 ···ead . (9)

Note that fork = 1 the Einstein action without cosmological
constant is recovered, while fork = 2 we obtained the Gauss-
Bonnet action,

I2 =
(d−2)!κ
(d−4)

Z
ddx

√−g(−RµναβRµναβ +4RµνRµν−R2) .

(10)
Returning to the action (4) we remember that this set of the-
ories possess asymptotically AdS black hole solutions given
by[12],

ds2 = −
(

1+
r2

l2 −
(

2GkM +δd−2k,1

rd−2k−1

)1/k
)

dt2 +

dr2

1+ r2

l2
−

(
2GkM+δd−2k,1

rd−2k−1

)1/k
+ r2dΩ2

d−2 . (11)

The black hole mass for any value ofk is a monotonically
increasing function of the horizon radiusr+, which reads

M(r+) =
rd−2k−1
+

2Gk

(
1+

r2
+

l2

)k

− 1
2Gk

δd−2k,1. (12)

The presence of the Kronecker delta within the metrics(11)
signals the existence of two possible black hole vacua(M = 0)
with different causal structures. The generic case, withd−
2k 6= 1, is

ds2 = −
(

1+
r2

l2 −
(

2GkM
rd−2k−1

)1/k
)

dt2 +

dr2

1+ r2

l2
−

(
2GkM

rd−2k−1

)1/k
+ r2dΩ2

d−2 . (13)

Analogously with the Schwarzschild-AdS metric, this set pos-
sesses a continuous mass spectrum, whose vacuum state is the
AdS spacetime. The other case is obtained for odd dimen-
sions, and it is a peculiarity of Chern-Simons theories. From
(11) we obtain,

ds2 = −
(

1+
r2

l2 − (2GkM +1)1/k
)

dt2 +

dr2

1+ r2

l2
− (2GkM +1)1/k

+ r2dΩ2
d−2. (14)

Here, the black hole vacuum differs from AdS spacetime.

III. CANONICAL FORMALISM

In this section we review[9] the derivation of the entropy
in the canonical formalism. Looking for the entropy correc-
tions it is considered the existence of small thermal fluctua-
tions around the equilibrium. Then, we begin with the canon-
ical partition function

Z(β) =
Z ∞

0
Ω(E)e−βEdE, (15)

whereΩ(E) is the density of states, that can be obtained from
the partition function doing an inverse Laplace transform

Ω(E) =
1

2πi

Z c+i∞

c−i∞
Z(β)eβEdβ =

1
2πi

Z c+i∞

c−i∞
eS(β)dβ, (16)

where

S(β) = lnZ(β)+βE (17)

is the entropy. The integral can be performed by the method of
steepest descent around the saddle pointβ0 = 1/T0 such that
S′0 = (∂S/∂β)β=β0

= 0. HereT0 is the equilibrium tempera-
ture. Expanding the entropy aroundβ0, we have

S= S0 +
1
2
(β−β0)2S′′0 + ... (18)

Substituting (18) in (16) and integrating we obtain

Ω(E) =
eS0

√
2πS′′0

. (19)

Finally, using the Boltzmann’s formula, is obtained

S = lnΩ = S0− 1
2

ln
(
S′′0

)
+ ..... (20)

Here S is the entropy at equilibrium. This is to be distin-
guished from the functionS(β), which is the entropy at any
temperature.

The logarithmic term can be transformed taking into ac-
count thatS′′0 is the fluctuation of the mean squared energy,
i.e,

S′′0 =< E2 >−< E >2, (21)
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and that the specific heat isC = (∂E/∂T)T0. Therefore

S = S0− 1
2

ln
(
CT2) . (22)

This result apply to stable thermodynamic systems with small
fluctuations around the equilibrium. The stability condition
is equivalent to the specific heat being positive. On the other
hand is assumed that the quantum fluctuations of the thermo-
dynamics quantities under consideration are small. In other
words, for black holes very close to extremality (T → 0), the
fluctuation analysis ceases to be valid due to large quantum
fluctuactions[9].

IV. CORRECTIONS TO THE ENTROPY IN HIGHER
ORDER GRAVITY

A. Asymptotically AdS black hole solutions

Reviewing the thermodynamic properties of the black hole
solution (13) we began with the expression for the Hawking
temperature, that is

TH =
1

4πkBk

(
(d−1)

r+

l2 +
d−2k−1

r+

)
, (23)

wherer+ is the horizon radius. Note that for allk such that
d−2k−1 6= 0 the temperature has the same behavior that the
Schwarzschild-AdS black hole(k=1), that is: the temperature
diverges atr+ = 0. Also has a minimum atrc given by

rc = l

√
d−2k−1

d−1
, (24)

and grows linearly for larger+. Consequently we can calcu-
late the specific heatCk = ∂M

∂T as a function ofr+. Using (23)
and (12) we obtain,

Ck = k
2πkB

Gk
rd−2k
+

(
r2
+ + r2

c

r2
+− r2

c

)(
1+

r2
+

l2

)k−1

. (25)

Here the functionCk has an unbounded discontinuity atr+ =
rc, signaling a phase transition. We will deal with black hole
with horizon radius that satisfies the conditionr+ > rc, where
the specific heat is positive and the correction formula (22)
can be apply.

Finally we present the entropy function

Sk = k
2πkB

Gk

Z r+

0
rd−2k−1

(
1+

r2

l2

)k−1

dr, (26)

obtained from the Euclidean path integral formalism[12].
Similar results are obtained in the Lagrangian formalism [16].

For simplicity we just perform the calculations for black
holes withk = 2. Therefore, for the entropy we get

S(0)
2 =

4πkB

G2
rd−4
+

[
1

(d−4)
+

r2
+

(d−2)l2

]
(27)

where(0) stands for the uncorrected entropy. In terms of this
entropy the Hawking temperature and the specific heat are
given by:

TH =

[
1

8πkBl2

(
4πkB

G2l2

)−1/(d−2)
]
× (28)

×

[
(d−1)+ (d−5)l2

r2
+

]

[
l2

(d−4)r2
+

+ 1
d−2

]1/(d−2) (S(0)
2 )1/(d−2),

C2 =
(

r2
+ + r2

c

r2
+− r2

c

)(
1+

l2

r2
+

)
1

l2

(d−4)r2
+

+ 1
(d−2)

S(0)
2 . (29)

In the limit r+ À l , C2 approaches the value

C2 = (d−2)S(0)
2 , (30)

and for the entropy we get

S2 = S(0)
2 − d

2(d−2)
lnS(0)

2 + .... (31)

This result is identical to the one obtained for the AdS-
Schwarzschild black holes[9].

We can also study the correction to the entropy near the
transition pointrc (after the minimum ofC2). Assumingr2

+−
r2
c ≈ l2(small l ), the entropy behaves as

S(0)
2 =

4πkB

G2
rd−4
+

[
1

(d−4)
+

2(d−3)
(d−2)(d−1)

]
. (32)

Consequently the relations between the thermodynamic quan-
tities are

TH =
B

A1/(d−4) (S
(0)
2 )1/(d−4), (33)

C2 =
C
A

S(0)
2 , (34)

where

A =
4πkB

G2

[
1

(d−4)
+

2(d−3)
(d−2)(d−1)

]
, (35)

B =
1

8πkB

1
l2

[
(d−1)+

(d−5)(d−1)
2(d−3)

]
, (36)

C =
4πkB

Gk

[
1+

2(d−3)
d−1

][
2(d−3)
(d−1)

+
(d−5)
(d−1)

]
. (37)

Therefore

S2 = S(0)
2 − d−2

2(d−4)
lnS(0)

2 + .... (38)

It is interesting to note that the entropy correction in this limit
is greater than the entropy correction found in (31).
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B. Chern-Simons Black Holes

Now let us consider the Chern-Simons black holes with
metric (14). The thermodynamic quantities can be obtained
consideringd−2k−1 = 0. So,

TH =
1

4πkBk

(
(d−1)

r+

l2

)
, (39)

CCS= k
2πkB

Gk
r+

(
1+

r2
+

l2

)k−1

, (40)

and

Sk = k
2πkB

Gk

Z r+

0

(
1+

r2

l2

)k−1

dr. (41)

In this case the temperature is not divergent and the specific
heat is a continuous monotonically increasing positive func-
tion of r+

In the limit r+ À l we get

CCS= (2k−1)S0
k (42)

and

Sk = S(0)
k − 2k+1

2(2k−1)
lnS(0)

k + ..... (43)

Note that in this limit the results, as was expected, are similar
to those found in the previous section.

On the other hand, forr+ ≈ l , we obtain

Sk = S(0)
k − 3

2
lnS(0)

k + ..... (44)

Similar to the proportionality constant found in [9] for the
BTZ black hole[17].

V. CONCLUSIONS.

In this paper we have calculated the entropy corrections for
different kinds of black holes in the context of higher order
gravity. The results are similar to those found in the literature
despite the fact that the area law is not satisfied. Also is con-
firmed the lack of universality of the logarithmic prefactor.
In the case of Chern-Simons black holes with small horizon
radius we have found that the logarithmic prefactor does not
depended of the dimension.
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