
232 Brazilian Journal of Physics, vol. 36, no. 1B, March, 2006

An Efficient Algorithm to Generate Random Uncorrelated Euclidean
Distances: The Random Link Model

César Augusto Sangaletti Terc¸ariol
Centro Universit́ario Barão de Maúa

Rua Ramos de Azevedo, 423
14090-180, Ribeir̃ao Preto, SP, Brazil and

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto,
Universidade de S̃ao Paulo
Avenida Bandeirantes, 3900

14040-901, Ribeir̃ao Preto, SP, Brazil

and Alexandre Souto Martinez
Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto,

Universidade de S̃ao Paulo,
Avenida Bandeirantes, 3900,

14040-901, Ribeir̃ao Preto, SP, Brazil

Received on 27 October, 2005. Revised version received 20 January, 2006

A disordered medium is often constructed byN random points independently and identically distributed in
a d-dimensional hyperspace. Characteristics related to the statistics of this system are known as the random
point problem. Asd → ∞, the distances between two points become independent random variables, leading
to its mean field description: the random link model. While the numerical treatment of large random point
problems poses no major difficulty, due to Euclidean restrictions the same is not true for large random link
systems. Exploring the deterministic nature of the pseudo-random number generators, we present techniques
which allow to consider models with memory consumption ofO(N), instead ofO(N2) obtained by a naive
implementation, but with the same time dependenceO(N2).

Keywords: Random media; Random point problem; Random link model; Random-number generator

I. INTRODUCTION

The random point problem (RPP) is a classical approach to

construct disordered media. The coordinatesx(k)
i of N random

points are independently and randomly generated following
a given common probability density function (pdf). Uniform
deviates along the unitary length edges of ad-dimensional hy-
percube are usually considerated. The distance between any
pair of pointsi and j is obtained by the Euclidean metrics:

D2
i j = ∑d

k=1

[
x(k)

i −x(k)
j

]2
. A possible computational imple-

mentation of the RPP mainly consists of the following steps:

1. randomly generate the coordinatesx(k)
i ,

2. store them in aN×d matrix, calledcoordinate matrix,

3. use the Euclidean metrics to calculate the distance be-
tween all pairs of points, and

4. store them in aN×N matrix, calleddistance matrix.

In this naive algorithm, both time and memory consumptions
are proportional toN2. In numerical applications, this lim-
its system sizes typically toN = 15000 when using advanced
techniques of random access memory (RAM) allocation.

Due to boundary effects and Euclidean restrictions, the dis-
tances between any two points are not all independent ran-
dom variables, in fact, there are correlations among them. For

fixed N, as the system dimensionality increases, boundary ef-
fects become more and more pronounced (periodic boundary
conditions is a technique frequently used to minimize these ef-
fects) and the distances become less and less correlated. In the
limit d→ ∞, all the two-point distances are independently and
identically distributed (i.i.d.) random variables and this model
is known as therandom link (distance) model[1] (RLM). Yet
two Euclidean constraints remain in the RLM: (i) the distance
from a point to itself is always null (Dii = 0, for all i) and (ii)
the forward and backward distances are equal (Di j = Dji , for
all i, j). If these constraints are relaxed, this model becomes
therandom map model[2, 3], which is the mean field approx-
imation for Kauffman automata [4].

Both, the RPP and its mean field description, the RLM,
have been very fruitful in the determination of numerical and
analytical results in several interesting systems, such as sta-
tistics on the optimal trajectories for the traveling salesman
problem on a random set of cities [5–9], frustrated dimeriza-
tion optimization modeled by the minimum matching prob-
lem [10, 11] (or equivalently spin-glasses [10]) and partial
self-avoiding deterministic [12, 13] and stochastic [14, 15]
walks. The high-dimensional case for these partial self-
avoiding walks has been our main motivation to consider the
RLM. In deterministic walks [16–19], one is mainly interested
on the neighborhood ranking of random points. Euclidean dis-
tances are only a means to obtain this ranking, which is inde-
pendent of a particular choice for the distance pdf [13]. Here,
we will consider only uniform deviates, nevertheless the algo-

César A. S. Terc¸ariol and Alexandre S. Martinez 233

rithm can be easily adapted to treat any distance pdf, such as
the one with the pseudo-dimension parameter [8].

In Sec. II we briefly review the numerical implementation
of the conguential random number generation and discuss as-
pects related to RAM allocation for the dynamic and static
variables. The RPP is considered and an improvement to its
numerical implementation is suggested in Sec. III. In Sec. IV,
we consider the RLM and show that the straightforward im-
plementation permits the simulation of only small numeri-
cal systems in a computer. Thus, two alternative (one- and
multiple-seed) algorithms are presented and explore the re-
producibility of the pseudo-random number generators. Final
remarks are addressed in Sec. V.

II. SOME REMARKS ABOUT RANDOM NUMBER
GENERATORS

The algorithms presented here have in commom the use of a
pseudo-random number generator. In its simplest implemen-
tation, it is a deterministic algorithm, which requires a single
integer parameter, calledseed. The algorithm works as fol-
lows: before the first call to the generator, the seed is initial-
ized to an (usually) arbitrary value (S1). In the subsequent
generator calls, the seed values are deterministically modified
and give rise to the uncorrelated long sequence of integersS1,
S2, S3, . . ., uniformly distributed in the interval[0,2m−1], for
somem≥ 0. After running the whole sequence, the seed reas-
sumes its initial valueS1 and them-cycle reinitiates. Each ini-
tializing valueS1 will typically return a different subsequent
random sequence. However, thesameinitializing value ofS1
will always lead to thesamerandom sequenceS2, S3, It
is this deterministic feature of the random number generator
that is the basis of our algorithm. For each integer seed value,
the generator commonly returns a real number (Si/2m), which
is uniformly distributed in the interval[0,1[, while keeping
track of the seed sequence. It is this real number which is
commonly used in numerical simulations.

Attention must be paid to a particular numerical program-
ming aspect. The algorithms proposed here assume that all
random number generator local variables are set as dynamic.
To understant this aspect, let us briefly recall how variables
are generally handled by subroutines. When a numerical code
enters a routine, a RAM address is allocated for each local
dynamic variable and these addresses are freed when the code
leaves this routine. The internal routine variable values are
not preserved. More sophisticated random number genera-
tors make use of internal static variables to keep their variable
values stored for future use. Unlike dynamic, static variables
have their addresses and current values allocated in RAM even
when the routine is left. In this kind of generator, two calls
with thesameseed do not yield thesameresult, because the
values of static variables are not the same in those two calls.
To obtain the desired reproducibility of this kind of random-
number generator, these static variables must be treated sep-
arately: a vector of sizeN must be declared to each one of
them to recover their values. Even in this case, the memory
and time consumption orders of magnitude are not altered.

III. RANDOM POINT PROBLEM

An alternative and better procedure to the RPP algorithm
described in the introduction is to replace theN × N dis-
tance matrix by a vector of sizeN, calledmask, and calculate
only the distances related to a given point at each time step
(for instance, to determine its neighborhood ranking). The
unique computational waste is to calculate the same distance
(Di j = Dji) twice (it could have been calculated only once
if one had the distance matrix). Nevertheless, the time de-
pendence is kept proportional toN2, while the memory com-
sumption becomes proportional toN.

To minimize the boundary effect, it is important to consider
periodic boundary conditions and to keep fixed the mean point
separation (� = L/N1/d = ρ−1/d, whereL is a typical system
size andρ the point density). For this reason one has to in-
creaseN as the system dimensionality increases. Since high-
dimensional systems are to be considered, even the declara-
tion of the coordinate matrix may consume huge computer
RAM. This introduces additional computational difficulties
once the system size has found a barrier imposed by the di-
mensionality.

Nevertheless, using periodic boundary conditions, the
higher the system dimensionality is, the weaker the correla-
tions among the distances (triangular inequality, for exam-
ple) are. In the high-dimensionality limit (d → ∞), the dis-
tances between all pairs of distinct points can be considered
asN(N−1)/2 i.i.d. random variables and the RPP converges
to the RLM.

IV. RANDOM LINK MODEL

To work numerically with the RLM, one must directly gen-
erate the i.i.d. random distances, rather than randomly gener-
ate the point coordinates and calculate the distances by apply-
ing the Euclidean metrics to the coordinate matrix. This solves
the large computer RAM allocation problem due to high sys-
tem dimensionality, since the coordinate matrix does not exist
anymore.

A. Conventional Implementation

In a straightforward implementation of the i.i.d. random
distances in RLM, one declares aN×N distance matrix and
simply applies the two Euclidean constraints mentioned in the
introduction: (i) set 0 to its whole main diagonal and (ii) ran-
domly generate each distanceDi j , with i = 1,2, . . . ,N−1 and
j = i + 1, i + 2, . . . ,N (right-hand side of the main diagonal),
and set its value toDji (left-hand side of the main diagonal).
Nevertheless, the symmetry restriction (Di j = Dji) imposes
serious numerical difficulties, aN×N distance matrix must be
declared now. The time dependence and memory consump-
tion to run this conventional computer algorithm are both pro-
portional toN2 (see Table I). This limits the RLM use to com-
putational small systems. For standard memory allocation at
disposal, systems can have up toN = 104 points.

234 Brazilian Journal of Physics, vol. 36, no. 1B, March, 2006

TABLE I: Memory and time consumptions for the conventional,
one-seed and multiple-seed methods described. The multiple-seed
method is the best one since it combines the lowO(N) memory con-
sumption of the one-seed method and the lowO(N2) time spent in
the conventional implementation method.

Method ConventionalOne-SeedMultiple-Seed
Time N2 N3 N2

Memory N2 N N

We present below two methods, which replace the distance
matrix by a mask, just as in the case of RPP. To re-obtain the
distanceDi j (and obey the symmetry restriction), the deter-
ministic feature of pseudo-random number generator is exten-
sively explored.

B. One-Seed Method

The one-seed method uses two integer variables alternately
as parameter to the random number generator, namelyseed
(used to generate new distances at right-hand side of the dis-
tance matrix main diagonal) anddummy(used to re-obtain the
distances already generated and obey the metric symmetry).
As a first step, initializeseedwith an arbitrary valueS1 and
save this value elsewhere. In theith row, with i ranging from
1 toN:

1. setDi,i = 0,

2. use the variableseedto sequentially generate new dis-
tancesDi,i+1, Di,i+2, . . . ,Di,N, and

3. to re-obtain each distanceDi, j , with j ranging from 1 to
i −1, use the variabledummyin the following steps:

(a) initialize it withS1,

(b) use it to makei− j −1 generator calls (these calls
are made just to setdummyto the sameseedvalue
used to generate the distanceDj,i , their return val-
ues will be not used),

(c) make a single call to re-obtain the desired distance
Di, j = Dj,i , and

(d) makeN− i more calls (just to preparedummyto
the nextj iteration, the return values are again not
used, see Fig. 1).

This method enables us to numerically construct systems
much larger than with the conventional method, but at the ex-
pense of a longer computational time. To generate all dis-
tances in aN-point map, the memory consumption isO(N)

(see Table I) while the required time is proportional toN3,
due to the expensive generator dummy calls (see Fig. 2).

C. Multiple-Seed Method

An improvement to the one-seed method is obtained replac-
ing the integer variabledummyby an integer vector of sizeN,
nameds vec. The initial seed of each row (S1, SN, S2N−2 . . .)
is stored in the correspondent entry ofs vec. Remark that only
N−1 entries will be really used, but usingN avoids undesired
boundary tests. The integer variableseedis still used. Ini-
tialize it with some arbitrary valueS1. To understand the im-
plementation, let us suppose thei-th row are been genereted,
with i varying from 1 toN as before:

1. setDi,i = 0,

2. store the current value ofseedin s vec(i) (i-th entry of
s vec) to be used further,

3. useseedto sequentially generate the distancesDi,i+1,
Di,i+2, . . . ,Di,N, and

4. to re-obtain the distancesDi, j = Dj,i , with j varying
from 1 to i − 1, simply uses vec(j) to make a single
generator call, afterwards the current value ofs vec(j)
will be modified for the calculation of the next iterac-
tion (see Fig. 1).

The multiple-seed method keeps track of the seeds along
the construction of all pair distances and may drastically re-
duce computation time to orderN2 just like the conventional
implementation, but with memory consumption of orderN,
just as the one-seed method.

V. CONCLUSION

In this paper we have developed new algorithms to deal nu-
merically with large random link systems. In particular, the
multiple-seed algorithm is the best compromise between time
and memory consumptions.

Acknowledgements

We thank O. Kinouchi and R. S. González for fruitful
discussions. A.S.M. acknowledges the support from CNPq
(305527/2004-5) and FAPESP (2005/02408-0).

[1] M. M ézard, G. Parisi, Europhys. Lett.2, 913 (1986).
[2] B. Harris, Ann. Math. Stat.31, 1045 (1960).

[3] B. Derrida, H. Flyvbjerg, J. Phys. (Paris)48, 971 (1987).
[4] S. A. Kauffman, J. Teor. Biol.22, 437 (1969).

César A. S. Terc¸ariol and Alexandre S. Martinez 235

0

0

0

0

0

0

S1 S2 S3 S4 · · · SN−1 SN� � � � � �

S1

S2

S3

S4

...

SN−1

�

�

�

�

SN SN+1 SN+2 · · · S2N−3 S2N−2� � � � �

SN

SN+1

SN+2

...

S2N−3

�

�

�

S2N−2 S2N−1 · · · S3N−6 S3N−5� � � �

S2N−2

S2N−1

...

S3N−6

�

�

S3N−5 · · · S4N−10 S4N−9� � �

S3N−5

...

S4N−10

�

· · · S5N−15 S5N−14� �

...

S5N−15

� � � � �
· · ·

...

FIG. 1: Illustration of the seed evolution at each call to the numerical random number generator along the distance matrix in the conventional,
one- and multiple-seed algorithms. Each seed is used to generate the distance placed in its correspondent position.

FIG. 2: Processing time as a function of system size. This dependence is well described by a power law with exponent 2 for the conventional
and multiple-seed methods and exponent 3 for the one-seed method. While the conventional method can deal with systems of size around 104,
the multiple-seed method can deal with systems more than 100 times greater. The discontinuity in the conventional method curve corresponds
to the moment when swap to the disk started to be performed.

[5] A. G. Percus, O. C. Martin, Phys. Rev. Lett.76, 1188 (1996).
[6] N. J. Cerf, J. H. B. de Monvel, O. Bohigas, O. C. Martin, A. G.

Percus, J. Phys. I (France)7, 117 (1997).
[7] A. G. Percus, O. C. Martin, J. Stat. Phys.94, 739 (1999).
[8] D. Aldous, A. G. Percus, Proc. Nat. Acad. Sci. USA100, 11211

(2003).
[9] D. J. Aldous, Proc. R. Soc. A461, 825 (2005).

[10] J. H. B. de Monvel, O. C. Martin, Phys. Rev. Lett.79, 167
(1997).

[11] J. Houdayer, J. H. B. de Monvel, O. C. Martin, Eur. Phys. J. B

6, 383 (1998).
[12] O. Kinouchi, A. S. Martinez, G. F. Lima, G. M. Loureno,

S. Risau-Gusman, Physica A315, 665 (2002).
[13] C. A. S. Terçariol, A. S. Martinez, Phys. Rev. E72, 021103

(2005).
[14] S. Risau-Gusman, A. S. Martinez, O. Kinouchi, Phys. Rev. E

68, 016104 (2003).
[15] A. S. Martinez, O. Kinouchi, S. Risau-Gusman, Phys. Rev. E

69, 017101 (2004).
[16] G. F. Lima, A. S. Martinez, O. Kinouchi, Phys. Rev. Lett.87,

236 Brazilian Journal of Physics, vol. 36, no. 1B, March, 2006

010603 (2001).
[17] H. E. Stanley, S. V. Buldyrev, Nature (London)413, 373 (2001).
[18] D. Boyer, O. Miramontes, G. Ramos-Fernandez, J. L. Mateos,

G. Cocho, Physica A342, 329 (2004).
[19] D. Boyer, H. Larralde, Complexity10, 52 (2005).

