Determination of in vitro antidiabetic effects of Zingiber officinale Roscoe

Naila Abdul Sattar, Fatma Hussain*, Tahira Iqbal, Munir Ahmad Sheikh

Department of Chemistry and Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad- Pakistan

Aqueous extracts of Zingiber officinale rhizomes were studied to evaluate their antidiabetic effects on protein glycation and on the diffusion of glucose in vitro in the present study. Zingiber officinale rhizome aqueous extract were examined at concentrations of 5, 10, 20 and 40 g/L. The antidiabetic effects were found to be dose-dependent. Antidiabetic potential of Zingiber officinale was mainly through inhibition of the glucose diffusion and to a limited extent by reducing the glycation. However, further studies are needed to determine in vitro effects of therapeutic potential by restraining postprandial glucose absorptions and plasma protein glycations in diabetic subjects.

Extratos aquosos de rizomas Zingiber officinale foram estudados para avaliar os seus efeitos antidiabéticos em glicação de proteínas e sobre a difusão de glicose in vitro, no presente estudo. Extratos aquosos de Zingiber officinale foram examinados nas concentrações de 5, 10, 20 e 40 g extrato de planta/L. Os efeitos antidiabéticos observados eram dependentes da dose. O potencial antidiabético de Zingiber officinale se verificou, principalmente, através da inibição da difusão de glicose e, em menor extensão, através da redução da glicação. Estudos adicionais são necessários para elucidar se efeitos in vitro representam potencial terapêutico, restringindo a absorção de glicose pós-prandial e a glicação de proteínas plasmáticas em indivíduos diabéticos.

INTRODUCTION

Incubation of proteins with glucose leads to non-enzymatic glycation and formation of amadori products known as an early glycation product. Non-enzymatic glycation of proteins or Maillard reaction is increased in diabetes mellitus due to hyperglycemia and leads to several complications such as blindness, hepatic and cardiovascular diseases, nerve damage and kidney failure (Hussain et al., 2008, 2011; Chen et al., 2011). Normal glucose homeostasis involves glucose absorption via the gut, production by the liver and utilization by nearly all tissues in the body (Kahn, 1992). Diabetes mellitus (DM), a metabolic disorder caused by insufficient or inefficient insulin secretory response is characterized by hyperglycemia.

Recently, much attention has been focused on natural and synthetic glycation inhibitors to delay the onset or progression of diabetic complications (Rahman et al., 2009; Peng et al., 2011). The scope for the discovery and development of new anti-diabetic therapies from nature’s pharmacy is vast and merits corresponding consideration.

Diet has always been recognized as a corner stone in the management of diabetes mellitus. Spices are known to exert several antidiabetic influences (Srinivasan, 2005). Given the large number of plants reputed to possess anti-diabetic properties (Saraswat et al., 2010; Ugwuja et al., 2010; Jafri et al., 2011), only a few have received equitable scientific and medical scrutiny in terms of their antiglycation activities. Another often ignored mechanism of anti-diabetic phytomedicines is the role of viscous polysaccharides that control blood glucose concentration by inhibiting intestinal
glucose absorption (Hagander et al., 1984; Edwards et al., 1988; Groop et al., 1993; Gallagher et al., 2003).

Zingiber officinale (ginger) rhizome is one of the classic examples of an herb used for not only culinary preparations but also for unique therapeutic significance owing to its antioxidant, antimicrobial, anti-inflammatory and chemoprotective potential (Afzal et al., 2001; El-Ghorab et al., 2010; Ghasemzadeh et al., 2010; Rani et al., 2011; Al-Suhaimi et al., 2011; Baliga et al., 2011; Butt, Sultan, 2011; Rehman et al., 2011). Although several studies have mentioned antidiabetic activity of *Zingiber officinale* (Grover et al., 2002; Akhani et al., 2005; Kelble, 2005; Al-Amin et al., 2006; Büyükbalci, Sedef, 2008; Islam, Choi, 2008; Abd-Elraheem et al., 2009; Saraswat et al., 2009; Ogbera et al., 2010; Saraswat et al., 2010; Madkor et al., 2011; Ramudu et al., 2011; Rani et al., 2011), no data is available on protein glycation and glucose absorption inhibitory potential of native *Zingiber officinale* rhizomes at national level. The present study was undertaken to investigate the antidiabetic effects of *Zingiber officinale* in terms of glucose diffusion and glycation inhibition.

MATERIAL AND METHODS

Extract preparation

Zingiber officinale rhizomes were collected from Botanical garden, University of Agriculture, Faisalabad, Pakistan during March, 2011. The collected rhizomes were homogenized to fine powder and were stored at room temperature. Aqueous extracts of roots were prepared by cold infusion. One gram powdered material was infused for 15 min in 40 mL of boiling distilled water and then filtered, dried under vacuum and stored at -20 °C till further analysis. Antidiabetic activity of *Zingiber officinale* was determined by two methods:

Glycation inhibition

To study the effect of *Zingiber officinale* on protein glycation process, fifteen combinations of 0.075 M phosphate buffer saline (PBS) with glucose (G1: 5.5, G2: 25, G3: 50 mM), Z. officinale (I1:5, I2:10, I3:20, I4: 40 g/L as inhibitor) and protein (bovine albumin) were incubated at 37 °C for five weeks (Table I). Samples were analyzed after 3rd and 5th weeks of incubation. Glucose concentrations were measured and samples were dialyzed to remove free glucose. Free glucose is the major hindrance in estimation of glycation level. Post-dialysis, glucose was again estimated to confirm final glucose levels. Total proteins in all samples after dialysis were determined by biuret method (Gornall et al., 1949). Thiobarbituric Acid (TBA) colorimetric test was used for the determination of both enzymatic glycation (EG) and non-enzymatic glycation (NEG) as described by Furth (1988).

TABLE I - Different combinations used for glycation inhibition study

<table>
<thead>
<tr>
<th>Sr.#</th>
<th>Combinations</th>
<th>Sr.#</th>
<th>Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P + G1</td>
<td>9</td>
<td>I3 + P + G3</td>
</tr>
<tr>
<td>2</td>
<td>P + G2</td>
<td>10</td>
<td>I3 + P + G1</td>
</tr>
<tr>
<td>3</td>
<td>P + G3</td>
<td>11</td>
<td>I1 + P + G2</td>
</tr>
<tr>
<td>4</td>
<td>I1 + P + G1</td>
<td>12</td>
<td>I3 + P + G3</td>
</tr>
<tr>
<td>5</td>
<td>I1 + P + G2</td>
<td>13</td>
<td>I1 + P + G1</td>
</tr>
<tr>
<td>6</td>
<td>I1 + P + G3</td>
<td>14</td>
<td>I1 + P + G2</td>
</tr>
<tr>
<td>7</td>
<td>I2 + P + G1</td>
<td>15</td>
<td>I1 + P + G3</td>
</tr>
<tr>
<td>8</td>
<td>I1 + P + G2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P: Protein (Bovine albumin), G: Glucose, I: Inhibitor (*Zingiber officinale*), G1: 5.5 mM, G2: 25 mM, G3: 50 mM; I1:5 g/L, I2:10 g/L, I3:20 g/L, I4:40 g/L

Non-enzymatic and enzymatic glycation (collective)

One mL of dialyzed sample (total protein = 10 mg/mL) was used for non-enzymatic and enzymatic glycation. Three test tubes were arranged for each of reduced and non-reduced samples. 0.1 mL of NaBH4 was added in reduced samples and 0.1 mL of 0.01 N NaOH was added to non-reduced samples. All test tubes were left for 30 minutes at 37 °C. After half an hour, 1 drop of 1N HCl was added in each test tube, followed by addition of 0.5 mL oxalic acid. Tubes were capped and autoclaved for half an hour at 124 °C (115 Lb/inch2 pressure). Tubes were cooled to room temperature and then placed in ice. In each tube, 0.5 mL of 40% trichloroacetic acid (chilled) was added. Afterwards, samples were centrifuged for 15 minutes at 15000 rpm. Supernatant (1.5 mL) was mixed with 0.5 mL freshly prepared TBA. Later on, the samples were incubated at 37 °C in water bath for 15 minutes and absorbance was determined at 443 nm.

Enzymatic glycation

For determination of enzymatic glycation (EG), 0.1 mL NaOH (0.01 N) containing 400 molar excess of NaBH4 was used. After the reduction, the glycation level was determined by the same process as mentioned above. Non-enzymatic glycation(NEG) was determined as follows:

\[\text{NEG} = (\text{NEG} + \text{EG}) - \text{EG} \]
Glucose diffusion inhibition

The potential of ginger rhizome extracts to inhibit glucose diffusion into the external solution was investigated at set time intervals (Gallagher et al., 2003). In a dialysis tube (6 cm×15 mm), 15 mL of a solution of glucose and NaCl (0.15 M) was introduced and the appearance of glucose in the external solution was measured. The sealed tube was placed in a centrifuge tube containing 45 mL of 0.15 M NaCl. The tube was placed on an orbital shaker at room temperature. Glucose concentrations were measured by glucose oxidase kit method. Incremental areas under the glucose curves (AUC) were calculated by trapezoidal rule.

Statistical analysis

All data were expressed as mean ± SD and % age ± SD of triplicate measurements. Student’s t-test was performed by Statistical Package for the Social Sciences (SPSS Inc. Chicago, IL, USA) software (version 15.0) with level of significance set at \(p < 0.05 \).

RESULTS

Results of antiglycation potential of Zingiber officinale are presented in Figure 1. For controls, 50 mM (G3) glucose exhibited maximum glycation (3.97 mol glucose/mol protein) after five weeks. G1 (5.5 mM) and G2 (25 mM) also showed optimal glycations (3.64 and 3.72 mol glucose/mol protein). Aqueous extract of 5g/L ginger (I1) reduced glycation levels for G1 (5.5 mM), G2 (25 mM) and G3 (50 mM) as compared to controls and glycation concentrations after 5th week were 3.52, 3.48 and 3.44 mol glucose/mol protein, respectively. Likewise, aqueous extract of 10 g/L (I2) ginger lowered glycation levels for G1, G2 and G3 up to 3.33, 3.28, 3.19 mol glucose/mol protein, respectively in the final week. Doubling the extract concentrations (I3) as compared to I1 further decreased glycation levels (for G1: 3.01, G2: 2.97, G3: 2.84 mol glucose/mol protein). Percentage differences in glycation of various combinations from controls reduced significantly. Glycation reduction by I1 was not significant for any combination after 3rd or 5th week analysis. I2 showed significant decrease with G3 in 5th week. Optimum inhibitor concentrations (I3 and I4) indicated significant decline in glycation measurements after 5th week. Most striking observation was maximum glycation inhibition by I4 (Table II).

A simple model was used to investigate glucose absorption inhibition by Zingiber officinale. After 30 h, in the control (without plant extract) glucose movement out of dialysis reached a peak level and glucose concentration in the external solution was 21.20 mmol/L. Different concentrations of Z. officinale extracts were used to investigate the dose-dependent effects on glucose diffusion. The plant extracts exhibited a concentration-dependent inhibitory effect on glucose movement (Figure 2).

The effect of variable inhibitor concentrations on

![Figure 1](attachment:image.png)

FIGURE 1 - Effect of aqueous extracts of Z. officinale rhizome on glycation levels. Data are mean ± SD for triplicate measurements. P: Protein (Bovine albumin), G: Glucose, I: Inhibitor (Zingiber officinale), G1: 5.5 mM, G2: 25 mM, G3: 50 mM; I1: 5 g/L, I2: 10 g/L, I3: 20 g/L, I4: 40 g/L.
TABLE II - Percent decrease in glycation levels at different concentrations of plant extracts

<table>
<thead>
<tr>
<th>Combination</th>
<th>% Decrease in glycation after 3 weeks</th>
<th>% Decrease in glycation after 5 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (no extract)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G₁</td>
<td>2.89 ± 0.08</td>
<td>3.30 ± 0.06</td>
</tr>
<tr>
<td>G₂</td>
<td>3.68 ± 0.18</td>
<td>6.45 ± 0.02</td>
</tr>
<tr>
<td>G₃</td>
<td>10.69 ± 0.05</td>
<td>13.35 ± 0.03</td>
</tr>
<tr>
<td>Plant extract (I₁)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G₁</td>
<td>2.57 ± 0.03</td>
<td>8.52 ± 0.02</td>
</tr>
<tr>
<td>G₂</td>
<td>7.02 ± 0.06</td>
<td>11.83 ± 0.01</td>
</tr>
<tr>
<td>G₃</td>
<td>10.38 ± 0.01</td>
<td>19.65 ± 0.02</td>
</tr>
<tr>
<td>Plant extract (I₂)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G₁</td>
<td>8.04 ± 0.04</td>
<td>17.31 ± 0.01*</td>
</tr>
<tr>
<td>G₂</td>
<td>15.5 ± 0.20</td>
<td>20.16 ± 0.01*</td>
</tr>
<tr>
<td>G₃</td>
<td>17.61 ± 0.01</td>
<td>28.46 ± 0.03*</td>
</tr>
<tr>
<td>Plant extract (I₃)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G₁</td>
<td>21.22 ± 0.06*</td>
<td>27.47 ± 0.01*</td>
</tr>
<tr>
<td>G₂</td>
<td>26.76 ± 0.03*</td>
<td>27.69 ± 0.02*</td>
</tr>
<tr>
<td>G₃</td>
<td>24.84 ± 0.02*</td>
<td>31.99 ± 0.01*</td>
</tr>
</tbody>
</table>

Data are % ± SD for triplicate measurements.
G: Glucose, I: Inhibitor (Zingiber officinale), G₁: 5.5 mM, G₂: 25 mM, G₃: 50 mM; I₁: 5 g/L, I₂: 10 g/L, I₃: 20 g/L, I₄: 40 g/L
*p < 0.05

Percentage decrease in glycation in comparison to control.

TABLE III - Effect of different concentrations of plant extract on glucose diffusion to external solution

<table>
<thead>
<tr>
<th>Sample</th>
<th>AUC (mmol/L glucose after 30 h)</th>
<th>% Decrease in Diffusion²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (no extract)</td>
<td>416.10 ± 1.52</td>
<td>-</td>
</tr>
<tr>
<td>Plant extract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁ (40 g/L)</td>
<td>221.70 ± 2.07</td>
<td>46.71 ±*</td>
</tr>
<tr>
<td>I₂ (20 g/L)</td>
<td>282.45 ± 0.86</td>
<td>32.1 ±*</td>
</tr>
<tr>
<td>I₃ (10 g/L)</td>
<td>309.60 ± 12.36</td>
<td>25.59 ±</td>
</tr>
<tr>
<td>I₄ (5 g/L)</td>
<td>342.60 ± 7.25</td>
<td>17.66 ±</td>
</tr>
</tbody>
</table>

Data are mean ± SD or % ± SD for triplicate measurements.
p < 0.05

¹AUC: (area under the curve) was calculated using total glucose diffusion during 30 h incubation period as described in the methods section.
²Percentage decrease in movement of glucose into the external solution in comparison to control.

effective inhibitors of glucose movement in the model system. In the presence of 20 g/L inhibitor, glucose diffusion was significantly decreased and external glucose concentrations were 15.1 mmol/L after 30 h. This represents 32.1% decrease in total glucose diffusion compared to control (p < 0.05). Similarly, 40 g/L ginger revealed more than 45% decrease in the glucose movement (p < 0.05) compared to control with a mean external glucose concentration of 12.4 mmol/L after 30 h. Extracts containing I₁ and I₂ inhibitor concentrations were least effective. These extracts demonstrated a mean external glucose concentration of 17.20 and 15.80 mmol/L after 30 h. The external glucose concentrations after 30 h were greater at 5 g/L compared to 40 g/L (17.2 vs 12.4 mmol/L respectively, p < 0.05). Aqueous ginger extracts demonstrated significant inhibitory effects on glucose movement into external solution across dialysis membrane compared to control. For all the test samples, the overall rates of glucose movement into external solution were lower than that of control. The results underline the importance of Zingiber officinale against the diabetic conditions mainly through inhibition of the glucose absorption and to a lesser extent by its antiglycating potential. The therapeutic use of nutrients needs further exploration for the prevention or delay of diabetic complications.

DISCUSSION

Nonenzymatic glycation of proteins or Maillard reaction is increased in diabetes mellitus due to hyperglycemia (Hussain et al., 2008; Cárdenas-León et al., 2009; Hussain et al., 2010; Hussain et al., 2011; Schalkwijk, Miyata, 2012). Numerous synthetic and natural com-

FIGURE 2- Effect of aqueous extracts of Z. officinale on glucose diffusion.

glucose diffusion out of the dialysis tube was also assessed in terms of area under curve (AUC) (Table III).

Extract having 20 and 40 g/L ginger were the most
Determination of in vitro antidiabetic effects of Zingiber officinale Roscoe

In recent years, much interest has been focused on the role of viscous polysaccharides in the treatment of diabetes mellitus. The action of the polysaccharides in reducing postprandial hyperglycemia is thought to be related to their viscosity. Viscous polysaccharides may delay glucose absorption probably by impairing the access of luminal contents to the absorptive epithelium (Hagander et al., 1984; Edwards et al., 1988; Groop et al., 1993).

Ginger extracts also prevented or reduced glucose movement and evaluated percent decrease predicted the action of the plant polysaccharides on hyperglycemia in vivo. High concentration extracts (20, 40 g/L) showed greater percent decrease (32%-46.7%) in glucose movement. The results suggested that the part of the antihyperglycemic actions of ginger may be by decreasing glucose absorption in vivo. The main mechanism concerning the role of dietary fiber in lowering postprandial serum glucose is the viscosity of different dietary fibers in hampering diffusion of glucose and postponing absorption and digestion of carbohydrates as these bind glucose and resultantly decrease the concentration of available glucose in the small intestine (Ou et al., 2001). Gallagher et al. (2003) studied the ability of different plants to inhibit glucose diffusion. They reported that agrimony and avocado represented the greatest inhibitory effect on glucose diffusion (more than 60%). Mushrooms, coriander, eucalyptus, juniper, lucerne and mistletoe decreased significantly (ranged 6%-48%). While elder and nettle extracts did not significantly decrease glucose diffusion. Contrary to these findings, Büyükbalci and Sedef (2008) observed that the overall rates of glucose movement into external solution were higher than control for ten aqueous herbal tea extracts. None of the samples demonstrated significant inhibitory effects on glucose movement into external solution across dialysis membrane compared to the control. Further studies are required to elucidate in vitro effects regarding postprandial glucose absorptions and for improving glycemic control in diabetic subjects.

In conclusion, results of the present study suggest that Z. officinale rhizomes with antiglycating and antidiabetic/hypoglycemic properties might provide a viable approach, either food based or pharmacological, in the treatment of diabetic complications.

REFERENCES

Determination of in vitro antidiabetic effects of Zingiber officinale Roscoe

Received for publication on 30th January 2012
Accepted for publication on 18th June 2012