The effect of irrigation solutions on the apical sealing ability in different root canal sealers

Abstract: The aim of this study was to assess the effect of three root canal irrigation solutions on the apical sealing ability of three root canal obturation materials: gutta-percha/AH plus or MM-seal and Resilon/Epiphany SE. A total of 100 teeth with single straight root canals were randomly divided into three equal groups of 30 samples each, with the other 10 teeth (5 positive and 5 negative) used as controls. Each irrigation group was divided into three groups according to the use of three different root canal obturation materials (n = 10): Gutta-percha with AH plus or MM-seal, Resilon with Epiphany SE. The crowns were removed at the cementoenamel junction with a diamond disc under water coolant. The root canals were prepared using step-back technique and irrigation with either sodium hypochlorite (2.5%), chlorhexidine (2%), or MTAD solutions. The roots were obturated with lateral condensation technique using one of the obturation materials. The root surfaces was coated with two layer nail varnish (except apex), placed in 2% methylene blue dye solution, and centrifuged at 3,000 rpm for 5 minutes. Irrigation solutions affected the apical sealing ability of all the sealers. The chlorhexidine irrigation solution exhibited higher apical leakage values than did MTAD and NaOCl in all canal sealers, although the MTAD irrigation solution groups showed the least leakage values. The apical sealing ability of AH plus, Epiphany SE and MM-seal root canal sealers decreased when the chlorhexidine was used as an irrigation solution.

Descriptors: Dental leakage; Irrigation; Root canal preparation; Root canal obturation; Endodontics.

Introduction

Endodontic therapy seeks the elimination of bacteria and its products from the root canal. Intracanal medications to disinfect the root canal system have been advocated to increase the success of the treatment.\(^1\) Studies have suggested NaOCl and chlorhexidine as irrigation solutions.\(^2\)\(^-\)\(^4\) However, MTAD is a recently developed irrigating solution that consists of tetracycline, acetic acid and detergent.\(^5\) It has antimicrobial effect\(^6\) and appears to be effective for removing smear layer along the entire length of the prepared root canal.\(^4\) It is able to remove both organic and inorganic debris.\(^7\)

Many endodontic filling materials have been used in an attempt to improve apical seal during root canal therapy. The use of gutta-percha
with a sealer is currently the most common method for obturation. AH plus and MM-seal root canal sealers are epoxy resin based sealers used with gutta-percha. However, Resilon core material and Epiphany SE (Pentron Clinical Technologies, Wallingford, CT, USA) are popular obturation materials introduced as an alternative to gutta-percha and traditional root canal sealers. Resilon core material is a thermoplastic synthetic polymer-based root canal filling material and Epiphany SE is a self etch resin based sealer that eliminates the priming step.

Various methods have been used to evaluate the apical sealing property of root canal filling materials. Because of its sensitivity, ease of use, and convenience, the most common measurement used is the centrifuging dye penetration method. The depth of dye penetration represents the gap between the root filling and the canal walls. The assessment of linear dye penetration apically or coronally is the most common in vitro method for examining the adaptation of a root filling to the canal walls.

The aim of this study was to assess the effect of three different root canal irrigation solutions on the apical sealing ability of three different root canal obturation materials: gutta-percha with AH plus or MM-seal and Resilon with Epiphany SE.

Material and Methods

The teeth, extracted for periodontal/orthodontic reasons, were collected from the clinics of oral surgery. In total, 100 teeth with single straight root canals were randomly divided into three equal groups of 30 samples each. The other 10 teeth (5 positive and 5 negative) were used as controls. Each irrigation group was further divided into three groups according to the use of three different root canal obturation materials (n = 10): Gutta-percha with AH plus (Dentsply, Konstanz, Germany) or MM-seal (Micro-Mega, Besançon, France), Resilon with Epiphany SE (Pentron Clinical Technologies, Wallingford, CT, USA).

The crowns were removed at the cementoenamel junction with a diamond disc under water coolant. The canal lengths were visually established by placing a size 15 K file (Kerr, Romulus, MI, USA) into each root canal until the tip of the file was visible at the tip of the apical foramen. The working length was established 1 mm short of the apex. The canal systems were instrumented to the working length with a size 45 K file by using a step-back technique and irrigated with either 2.5% sodium hypochlorite (Wizard, Rehber Chemistry, Istanbul, Turkey), 2% chlorhexidine (Klorhex, Drogsan, Ankara, Turkey), or MTAD (Dentsply, Washington, USA) solutions. Finally, the root canals were flushed with 5 ml of 17% EDTA (Canal +, Septodont, France) for 1 min and 2 ml of saline solution and then dried with paper points.

Roots were filled using the lateral condensation technique with gutta-percha/AH plus sealer, gutta-percha/MM-seal and Resilon/Epiphany SE. For the Epiphany SE, light curing was applied for 40 seconds with a standard light-curing unit (Hilux, Led-max-550, Benlioglu, Turkey), according to the manufacturer’s instructions.

The root surfaces were coated with nail varnish (except apex). However, in the positive control group, the roots without filling with core material and sealer were coated with two layers of nail varnish except for the apical foramen. The negative controls were filled with core material and sealer, and then were completely coated with two layers of nail varnish.

After the filling process, all samples were stored in saline solution at 37°C for 48 hours. All specimens were placed in 2% methylene blue dye solution, and centrifuged at 3,000 rpm for 5 min.

The specimens were washed under running tap water for 5 min. The roots were then longitudinally grooved with a diamond disc and split with a chisel, ensuring that the root canal filling was not penetrated, and then split into halves by leveraging with a plaster knife. The dye penetration was measured from the apical to the coronal part of the root canal to which the dye had penetrated using a stereomicroscope with ocular micrometer (Olympus BX 50, Olympus, Tokyo, Japan). Then, the mean values of leakage for each group were calculated and recorded. The Kruskal-Wallis and Mann-Whitney-U tests were performed for multiple comparisons to compare statistically significant differences. The level of significance was set at $\alpha = 0.05$.

Braz Oral Res. 2010 Apr-Jun;24(2):165-9
Results

All groups demonstrated apical leakage. The positive-control specimens demonstrated total dye penetration of the root canal system whilst the negative control teeth had no dye penetration into the roots.

The mean values of the apical sealing are showed in Table 1. Irrigation solutions affected the apical sealing ability of the sealers. The chlorhexidine irrigation solution exhibited higher apical leakage values than did MTAD and NaOCl in all canal sealers (p < 0.05). However, the MTAD irrigation solution groups showed the least leakage values in all irrigation groups. But no statistically differences have been determined among the three sealers in terms of each irrigation group (p > 0.05).

Discussion

Endodontic treatment employs an aseptic technique during which the infected root canal is disinfected using a combination of mechanical and chemical procedures. A chemomechanical approach to disinfection of root canals has been adopted in modern endodontics. In addition to that hermetic obturation and complete coronal and apical seal is one of the most important processes of endodontic treatment. Apical and coronal leakages have been shown to be important reasons for root canal treatment failure. A perfect apical seal is also essential for the prevention of apical percolation. The sealing quality of a root canal filling depends a great deal on the sealing ability of the sealer.

Several techniques have been used to analyze the sealing ability with regard to root canal fillings, including evaluation of leakage of bacteria, human saliva, protein complex, fluid filtration and dye leakage. However, dyes can chemically interact with sealing materials or dentin, which may influence its diffusion or promote tracer decoloration, impairing an adequate marginal leakage evaluation. Because of their small molecular size, dye penetration has been used as a dependent measure of sealing ability; however, whether dyes mimic penetration of microorganisms or antigens is still not known. Moreover, entrapped air in the canal filling may falsify dye penetration depth, suggesting the application of vacuum techniques or centrifugation, even if previous studies showed that dye penetration did not differ whether centrifugation was applied or not. In addition to that Matloff et al. (1982) reported no correlation between a dye penetration and a radioisotope method. Similarly, a study by Barthel et al. (1999) showed no correlation between dye penetration and bacterial leakage test methods. Moreover, Pommel et al. (2001) found no correlation between dye penetration, electrochemical and fluid filtration methods. Hence, the centrifugation method was chosen for the present study.

The studies of Onay et al. (2006) and also of Bodrumlu and Tunga (2007) found no significant differences between Epiphany/Resilon and AH plus/ gutta-percha root canal filling materials in terms of the apical sealing ability when irrigating the canals with NaOCl. The findings of the current study are consistent with those of these other studies.

On the contrary, Park et al. (2004) found that root canals filled with AH plus/gutta-percha treated with MTAD yielded significantly less coronal leakage than roots filled with AH plus/gutta-percha treated with sodium hypochlorite using a passive dye leakage method. However, our results from the gutta-percha/AH Plus groups irrigating with NaOCl or MTAD disagree with the results of Park et al.’s study (2004). This discrepancy might be due to

Table 1 - Mean apical leakage values for the experimental groups (mm).

<table>
<thead>
<tr>
<th>Irrigation solutions</th>
<th>Root canal obturation materials</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gutta percha/ AH Plus</td>
<td>Gutta percha/ MM-seal</td>
</tr>
<tr>
<td>MTAD</td>
<td>2.65 ± 0.36*</td>
<td>2.51 ± 0.33*</td>
</tr>
<tr>
<td>NaOCl</td>
<td>2.75 ± 0.32*</td>
<td>2.58 ± 0.31*</td>
</tr>
<tr>
<td>CHX</td>
<td>3.44 ± 0.34b</td>
<td>3.18 ± 0.28b</td>
</tr>
</tbody>
</table>

Equal letters: no statistically significant differences among the groups.
Different letters: statistically significant difference among the groups.

The effect of irrigation solutions on the apical sealing ability in different root canal sealers

Braz Oral Res. 2010 Apr-Jun;24(2):165-9

168