Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers

Abstract: The aim of this study was to evaluate stress distribution in an occlusal veneer according to the restorative material, restoration thickness, and cement layer thickness. A tridimensional model of a human maxillary first molar with an occlusal veneer preparation was constructed using a modeling software of finite element analysis. The model was replicated 9 times to evaluate the factors: restoration thickness (0.6, 1.2, and 1.8 mm) and cement layer thickness (100, 200, and 300 μm). Then, each model received different restorative materials (High Translucency Zirconia – [YZHT], Lithium Disilicate – [LD], Zirconia Reinforced Lithium Silicate – [ZLS], Feldspathic – [F], and Hybrid Ceramic – [HC]), totaling forty-five groups. An axial load (600 N) was applied on the occlusal face for static structural analysis. Solids were considered isotropic, homogeneous, and linearly elastic. Contacts were considered perfectly bonded. Fixation occurred in the dental root and a mechanical static structural analysis was performed. Descriptive statistical analysis and one-way ANOVA (α =10%) were performed for tensile stress peak values in the restoration and cement layer. The difference between groups was compared using the Tukey’s test with 10% significance to match the percentage of the mesh convergence test. According to the results, the cement layer thickness did not influence stress distribution in the restoration (p ≥ 0.10). The thicker the restoration, the higher the tensile stress concentration in the restoration. The graphs showed higher stress concentration in the YZHT, followed by LD, F, ZLS, and HC. Also, the restorative material influenced stress concentration on the cement layer, which decreased according to the sequence HC>YZHT>ZLS>LD>F. HC stood out for causing the least stress concentration in the restoration. Cement layer thickness did not interfere in the mechanical performance of the restorations.

Keywords: Finite Element Analysis; Ceramics; Dental Veneer; Tooth Wear.

Introduction

Tabletop or ultrathin occlusal veneers are a contemporary restorative approach indicated for teeth with occlusal wear. They consist of an important therapeutic modality to recover the occlusal vertical dimension of patients with great occlusal wear related to a parafunctional habit or physiological processes such as erosions. The main advantage of occlusal
veneers is the recovery of the masticatory function
with maximum preservation of dental structure,2,3
being a conservative option to traditional onlays4
and complete coverage crowns.2,5 Other advantages are the
possibility to predict the final result with temporary
restorations5 and the easiness of cementation.7

Although direct composite resins restorations
are commonly made,5,6 the use of indirect ceramic
materials may provide greater predictability to the
treatment in recovering the occlusal vertical dimension
during a prolonged time.4,5 However, multiple factors
interfere in restoration dynamics such as the final
appearance of the dental preparation, restoration
geometry and thickness, as well as the mechanical
performance of the ceramic material associated with
the adhesive technique.8

With the advances in CAD/CAM (computer
aided design/Computer aided manufacturing)
materials and resin cements,9 the loss of dental
structure can be minimized using conservative
preparations for occlusal veneers.2,6 Several studies
have evaluated fracture3,5,6 and fatigue resistance5
of restorations made in ceramics or composite resin4,5
of different thicknesses.6 The authors observed that
thickness is not as influential as the material under
a compressive load, thus allowing tabletop veneers
to resist loads higher than masticatory ones.6 Until
now, no clinical trial or case report has evaluated
the most common type of failure of occlusal veneers.
However, according to laboratorial fatigue tests,
cracks in the restoration and debonding are the most
common failure types.5,10 Therefore, it is important
to understand how stress from masticatory forces
is distributed4,11 in occlusal veneers. Computational
simulations from modeling the structures to be
evaluated4,11,12,13 allows the visualization of stress
centration regions. As assessed in in vitro studies,
defects in stress regions are the origin of fractures.

This study aimed to evaluate the stress distribution
in an occlusal veneer restoration according to the
restorative material, restoration thickness, and
cement thickness. The hypotheses were: a) there
would be differences in stress distribution in the
restoration and cement layer according to the occlusal
veneer thickness; b) a thicker cement layer could
negatively influence the mechanical response of the
occlusal veneer and resin cement; and c) different
ceramic materials would exhibit different mechanical
behaviors under the same conditions.

Methodology

Finite element analysis pre-processing

For finite element (FE) analysis (FEA), a tridimensional
(3D) model of a human maxillary first molar was
generated according to anatomical references containing
enamel, dentin and periodontal ligament. The pulp
chamber and root canals were generated as an empty
space in the dentin4,11 without elastic modulus. This
3D-FE model was inserted in a fixation cylinder that
simulated bone tissue.11,12 Next, the tooth was replicated
in 9 identical models with occlusal wear characteristic
of patients with severe dental erosion. Three levels of
wear were simulated: 0.6, 1.2, and 1.8 mm. For that, the
occlusal preparation followed the cusps convergence
according to Magne et al.,5 simulating the rehabilitation
with veneers of respective thicknesses for each model.
The geometry of the occlusal preparation was based
on a previous study whose minimum restoration
thickness was 0.6 mm at the center and 1.2 mm at the
cusps5 (Figure 1). From this definition, the restoration
thickness was increased 2- and 3-fold, resulting in 1.2
mm and 1.8 mm of minimum occlusal thickness. Three
cement layer thicknesses were also evaluated: 100, 200,
and 300 μm.14 Table 1 summarizes the group distribution
according to 9 models considering the restoration and
cement layer thicknesses. For the complete analysis,
each model’s crown received 5 different materials,
totaling 45 groups.

Figure 1. Three-dimensional model of a restored molar with
occlusal veneer of 1.2-mm minimum thickness.
Table 1. Group distribution according to restoration thickness, cement layer thickness, and restorative material. Number of elements and nodes are shown for each 3D-FEA model.

<table>
<thead>
<tr>
<th>Restoration thickness (mm)</th>
<th>Cementing layer thickness (µm)</th>
<th>Restorative material</th>
<th>Number of elements</th>
<th>Number of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>High translucency zirconia</td>
<td>38,456</td>
<td>130,36</td>
</tr>
<tr>
<td>0.6</td>
<td>200</td>
<td>Lithium disilicate</td>
<td>39,874</td>
<td>131,798</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>Zirconia reinforced lithium silicate</td>
<td>39,908</td>
<td>132,842</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Hybrid ceramic</td>
<td>41,34</td>
<td>132,912</td>
</tr>
<tr>
<td>1.2</td>
<td>200</td>
<td>Zirconia reinforced lithium silicate</td>
<td>41,65</td>
<td>133,174</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>Feldspathic</td>
<td>41,848</td>
<td>133,804</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>Hybrid ceramic</td>
<td>43,568</td>
<td>136,166</td>
</tr>
<tr>
<td>1.8</td>
<td>200</td>
<td></td>
<td>43,13</td>
<td>136,48</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td></td>
<td>43,962</td>
<td>136,588</td>
</tr>
</tbody>
</table>

Boundary condition and mesh generation

The geometries were imported to CAE ANSYS software (ANSYS 17.2, ANSYS Inc., Houston, USA) in STEP format and tetrahedral elements formed the mesh. A convergence test of 10% mesh control determined the number of elements and nodes; thus, the subdivision of the complex geometry into a finite number of elements did not interfere in the results. The properties of the materials and structures were attributed to each solid component with isotropic, homogeneous, and linearly elastic behavior. Young’s modulus and Poisson’s ratio were reported based on the literature, and all contacts were ideally bonded. Five restorative materials for the 9 models (according to restoration and cement thicknesses) were simulated: high translucency zirconia (YZHT), lithium disilicate (LD), zirconia reinforced lithium silicate (ZLS), feldspathic (F), and hybrid ceramic (HC), totaling 45 groups. The group distributions as well as the mesh and node numbers are summarized in Table 1.

FEA processing

Load application (600 N) occurred similar to the study by Ausiello et al., a methodology that considers the contact between a food bolus and the tooth surface during the closing phase of the chewing cycle. A cylinder base was selected for the system fixation, ensuring only the movement constraint on the Z axis so that the strain generated in all directions was computed. Results in the restoration and cement layer were obtained using maximum principal stress for quantitative analysis and minimum principal stress for a qualitative approach.

Statistical analysis

After the mechanical static structural analysis, the tensile stress peaks on the internal surfaces of the restoration and cement layer were exported in spreadsheets, according to the element number corresponding to the numerical calculation. The 100 highest values were selected for each structure (restoration and cement) of all 45 groups, totaling 9,000 values for tensile stress in MPa. The data were analyzed by descriptive statistics (mean and standard deviation), one-way ANOVA for each studied factor, followed by Tukey’s test for differences between groups. All tests were considered significant at 10% due to the correspondence of the mesh convergence test.

Results

In the compressive load situation, the maximum principal stress (Figure 2) was concentrated at the center of the occlusal veneer, and tensile stress (Figure 3) in the intaglio surface. Figure 2 shows that the higher the restorative material elastic modulus, the higher is the compressive stress concentration in the occlusal veneer external surface. The same behavior is observed for the tensile stress concentration in the intaglio surface: the higher the material elastic modulus, the higher the tensile stress concentration (Figure 3). The influence of each factor on the concentration of tensile stresses on the restoration and cement layer was evaluated with the statistical analysis. Figure 4 shows histograms of stress data that were plotted for each individual
Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers

factor to facilitate visualization of significant results, considering the same confidence interval as the computational results of mesh convergence. For each histogram, the X axis shows the calculated stress peaks in MPa, and the Y axis shows the data density according to the variability on the evaluated elements; thus, higher curves indicate lower variability and data farther to the right indicate higher stress peaks. Descriptive statistics, p value, and homogeneous groups are described in Figure 4. For the restoration, the cement layer thickness was not significant (p = 0.167), different from restorative material (p = 0.000) and restoration thickness (p = 0.009). However, the ceramic material (p = 0.001), thickness of restoration (p = 0.001), and cement layer (p = 0.012) were significant for the tensile stress generation on the cement layer. The bar graphs show individual stress peaks (Figure 5). YZHT showed the highest stress peaks for the restoration while HC showed the highest peaks for the cement layer, corroborating with the stress maps.

Discussion

This study evaluated five ceramic materials for occlusal veneer made in three thicknesses and cemented with different thicknesses of cement. The first hypothesis was accepted, because the restorative material thickness influenced the restoration and the resin cement biomechanics. The second hypothesis was rejected because the cement thickness was only significant for the stress generated in the cement itself. The third hypothesis was also accepted since each simulated material (different elastic modulus) had a significant influence on the occlusal veneer and resin cement mechanical response.

The results demonstrate that the restorative material can directly influence the prognosis in the long term. Each material has a specific hardness, which is reflected in various elastic modulus (in the present study, from 30 to 220 GPa) allowing different concentrations of tensile stresses on the crown intaglio surface.4,12,24,25 In this case, the most affected site was the internal surface of the restoration, which is suggested to be the initiation region for slow crack propagation.26 Defects on the surface may be the failure origin when

![Figure 2. Compressive stress in teeth restored with occlusal veneers in an occlusal view.](image)

Table 2. Mechanical properties of materials and structures used in the study.

<table>
<thead>
<tr>
<th>Material or structure</th>
<th>Elastic modulus</th>
<th>Poisson ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel15</td>
<td>84.1</td>
<td>0.33</td>
</tr>
<tr>
<td>Dentin15</td>
<td>18.6</td>
<td>0.32</td>
</tr>
<tr>
<td>Periodontal ligament16</td>
<td>0.069</td>
<td>0.45</td>
</tr>
<tr>
<td>Fixture cylinder17</td>
<td>3.6</td>
<td>0.3</td>
</tr>
<tr>
<td>High translucency zirconia18</td>
<td>210</td>
<td>0.33</td>
</tr>
<tr>
<td>Lithium disilicate19</td>
<td>95</td>
<td>0.25</td>
</tr>
<tr>
<td>Zirconia reinforced lithium silicate20</td>
<td>70</td>
<td>0.23</td>
</tr>
<tr>
<td>Feldspathic21</td>
<td>48.7</td>
<td>0.23</td>
</tr>
<tr>
<td>Hybrid ceramic22</td>
<td>30</td>
<td>0.28</td>
</tr>
<tr>
<td>Resin cement22</td>
<td>7.5</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Hybrid Ceramic / ZLS / Feldspathic / Lithium Disilicate / Zirconia

Figure 3. Tensile stress in teeth restored with occlusal veneers in sagittal section.

A high tensile stress occurs near them. Zirconia has the highest elastic modulus and consequently it showed higher tensile stress concentrated in its intaglio surface (Figure 3). However, due to its hardness property, it is difficult to affirm that this material could fail earlier than the simulated vitreous ceramics. The flexural strength of YZHT is twice as high as that of LD. Nevertheless, the stress peaks in zirconia were not twice higher than for LD. The hardness property consists in the ability of the material to limit crack propagation. In zirconia, this process occurs through the volumetric increase of 3-4% of the zirconia grains close to the crack due to the change of the tetragonal phase to the monoclinic phase.

Studies support that zirconia presents a higher value of fracture resistance and superior mechanical
properties than the ceramics evaluated herein. The higher the percentage of crystals in the ceramic structure, the greater the difficulty to propagate the defect (slow crack growth). A crack originates when the structure is subjected to a stress associated with external factors, such as humidity. After crack formation, the structure fails when the employed stress exceeds the fracture resistance of the material. The characteristic strength of a material under fatigue tends to be approximately half the flexural strength of the material.

The results suggest that lithium disilicate is more reliable than feldspathic ceramics, because the difference between the tensile stress of these materials was significant (<10%), yet close enough to predict that the
critical stress of feldspathic will occur earlier, as force is applied. This suggests that, under the same conditions, a feldspathic ceramic crown would fail earlier than a crown in LD, as the feldspathic ceramic has a lower tensile strength value than LD. Lithium disilicate has lower glass content (30–40% by volume) than feldspathic ceramic (more than 65% by volume) presenting a high degree of crosslinking, which prevents crack growth. Since we used a linear method and the complex geometry of the occlusal veneer was the same for both groups, it is possible to affirm that the slope of the graph line is similar for all materials. Thus, as feldspar has roughly three-fold less resistance than lithium disilicate ceramics, a lower stress peak may be more damaging to the vitreous material without reinforcement.

ZLS is not as rigid as lithium disilicate and the crystal reinforcement makes this material tougher than feldspathic ceramics due to its high glass content. However, the presence of zirconia in its structure is not shown to be beneficial for its resistance or survival. Also, lithium disilicate was shown to have superior mechanical results. Therefore, further studies with ZLS in occlusal veneer manufacturing are suggested.

The material with the lowest elastic modulus was the hybrid ceramic or ceramic infiltrated with polymer matrix. Under fatigue, a better performance is observed in polymer-based materials, and a lower risk of fracture is obtained in stress distribution studies. A failure pattern not as serious as a catastrophic failure was also observed. In spite of this, the highest values of stress were found in the resin cement for the hybrid ceramics. This material cannot concentrate stress in its own structure, thus the adjacent geometry receives more energy and participates in the dissipation of occlusal forces with greater intensity. Hybrid ceramics may be a promising option for manufacturing a restoration (even with higher tensile strength generated in the resin cement), since the calculated stress peak was about 10 times smaller than in zirconia. In addition, due to the

Figure 5. Bar graph of stress peaks generated in cement and restoration for all 45 groups.
Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers

The influence of occlusal veneer thickness on the cement layer performance has never been evaluated. Other studies used finite element analysis to assess this therapeutic modality, but did not simulate the cement line.\(^\text{38}\) It is important that all components of the restoration are simulated in a study, since the absence of the resin cement makes the system more rigid, and thus overestimates the calculated stress values.\(^\text{12}\) An ideal thickness is reported to be up to 120 \(\mu\)m.\(^\text{39}\) Higher compression during the restoration cementation facilitates the flow of the resin cement and decreases its thickness between the ceramic and the tooth.\(^\text{14}\) As the simulated restoration is made of friable materials such as vitreous ceramics, covers one side of the tooth, and can be as thin as 0.6 mm, the dentist could feel unsure about applying pressure to this ultrafine veneer during the cementation procedure. Articles describing the procedure for occlusal veneer restoration are no clear about the cementation step.\(^\text{2,5}\)

With a thinner cement line, important factors to avoid are the premature teeth contact and changes in the final position of the restoration, which could cause early fatigue of the ceramic material.\(^\text{11}\) In addition, thicker cement layers can present more defects, inferior micromechanical adjustment, and higher water sorption and solubility of the adhesive/cement than thinner layers,\(^\text{40}\) impairing the bond strength to the substrate.

The finite element analysis was essential to study 45 groups simultaneously, which would be too costly if using an *in vitro* experiment. Although it is a numerical analysis tool of biomechanical behavior and widely used in dental theoretical studies,\(^\text{4,11,12}\) this methodology has limitations and its results must be considered together with the literature to reach the best clinical decision. Limitations such as the use of isotropic materials, and absence of pH, temperature, and biofilm simulation should be considered. The influence of other factors such as glazing or not the ceramics, different materials in the antagonist tooth, and the reactive dentin should be studied in future investigations.

Conclusion

Despite the limitations of this study, it was concluded that all simulated restorative materials can be used for occlusal veneers. However, hybrid ceramics stand out because they produce a lower stress concentration in the restoration structure. The thickness of the cement layer did not affect the mechanical performance of the restorations. Also, thicker occlusal veneers present superior mechanical...
performance than thinner restorations, but all three simulated conditions can withstand masticatory loads.

References

Conflict of interest
The authors declare no conflict of interest.
Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers

