Prevalence of peri-implant diseases – a critical review on the current evidence

Abstract: The objective of this paper was to evaluate the current evidence reporting on the prevalence of peri-implantitis and to determine the influencing factors. An electronic search for articles published until February 2019 reporting on the prevalence of peri-implantitis was performed in MEDLINE. Included criteria were published in international peer-reviewed journals, written in English language, reported on the prevalence of peri-implantitis, included implants with a minimum follow-up of one year after functional loading and used a clear definition for peri-implantitis and/or peri-implant mucositis with a clear cutoff for bone level changes according to the case definitions of Sanz and Chapple and Berglundh et al. 2018. Included papers were analyzed for factors affecting the reported prevalences for peri-implantitis. Twenty-five papers were included in the present review and a wide range for the reported prevalence of peri-implantitis was seen. Case definitions for peri-implantitis with various thresholds for bone loss together with the type of reporting on patient- or implant-level were the most significant factors that lead to a large variety of the occurrence of the disease. Additionally, follow-up time and the evaluation in a certain “convenience” population may have influenced the prevalence values. In conclusion, it can be stated that a wide range for reporting the prevalence of peri-implantitis can be found and no real estimation of the global burden of the disease can be made. Applying accurate case definitions for peri-implantitis is the most important factor for reporting the prevalence and should be strictly followed in future reports.

Keywords: Dental Implants; Peri-Implantitis; Prevalence; Mucositis.

Introduction

In the past two decades, dental implants have become a widely accepted and implemented therapeutic method to replace missing teeth and support fixed and partially removable prostheses. High long-term survival rates have been reported both for systemically healthy (cumulative survival rates of 83.8% after 25 years, 96.1% after 10 years)\(^1\) as well as for medically compromised patients (i.e. oral cancer: cumulative survival rate after 20 years 90.8%).\(^2\) Despite the high survival rates and intensive periodontal and prosthetical maintenance over time, implant failures may occur.\(^3\)\(^,\)\(^6\) In the last decades, evidence on the presence of
peri-implant inflammations affecting both soft and hard tissues that may eventually lead to implant failure (loss) has substantially increased. These are seen as biological complications related to inflammatory conditions of the surrounding soft and bone tissues, which are induced by bacterial biofilm and are distinguished as peri-implant mucositis and peri-implantitis.7,8,9

Peri-implantitis was firstly described in 1987 by Mombelli et al.10 as an infectious disease with many common features to periodontitis. Considering the multiple etiological factors and clinical characteristics, many definitions arose and, from the clinical perspective, no consensus for a clear definition for peri-implantitis was settled. Peri-implantitis was mainly defined as an inflammatory response of the peri-implant mucosa with marginal bone loss, while peri-implant mucositis resumed to soft-tissues inflammation.11,12 Discrepancies in case definitions and disease estimations on various convenience samples led to controversial reports on the prevalence of peri-implant diseases.13,14 The lack of clear clinical parameters in these definitions led to a large range in the reported prevalence/incidence of peri-implant diseases making thus difficult to estimate the real burden of these pathologies. Considering the definitions for incidence (“the number of new cases of a specific disease occurring during a certain period”) and prevalence of a disease (“the number of cases of a disease in existence at a certain time point”),15 the use of longitudinal studies has been proposed for assessing the incidence while that of cross-sectional studies for determining the prevalence of peri-implant diseases.11 Nonetheless, in november 2017 in the World Workshop on Periodontolgy (WWP), the European Federation of Periodontology (EFP) and the American Academy of Periodontology (AAP) reached a consensus and set clear a definition with clear clinical cutoff points for peri-implant pathologies both for the day-to-day clinical practice as well as for epidemiological studies.16,17,18,19

Therefore, the aim of the present review, was to critically analyze the available evidence for the prevalence of peri-implantitis in the light of the current definition of peri-implant diseases.

Methodology

A literature search for articles published until February 2019 reporting on the prevalence and/or incidence of peri-implantitis and peri-implant mucositis was performed in MEDLINE via PubMed database. Included studies had to be: published in international peer-reviewed journals, written in English language, report on the prevalence and/or incidence of peri-implantitis and/or mucositis, include implants with a minimum follow-up of one year after functional loading and a clear definition for peri-implantitis and/or peri-implant mucositis with a clear cutoff for bone level changes (≥2/≥3 mm apical of the coronal part of the implant, in the absence of previous radiographic measurements, or bone loss beyond crestal bone level changes after initial bone remodeling after the first year of loading).9,16

Results

The initial electronic search revealed 248 publications; after abstract screening of the abstracts based on the inclusion criteria, 35 papers were selected for full-paper analysis. Included studies can be found in Table. Most of the papers considered in the definition for peri-implantitis a cutoff for bone loss of 2mm or calculated the bone loss from a level of 2–3 implant threads. Applying strictly all recommended definition criteria for peri-implantitis of the WWP 2017 (BOP/SUP, pocket depths ≥6mm, bone level ≥3mm of the most coronal portion of the intraosseous part of the implant) no single study can be taken into consideration.16

Discussion

A wide range of prevalences for peri-implant biological complications has been reported in the literature so far. Reviews and meta-analyses from the past three years mention prevalences for peri-implant mucositis of 42.9%,13 of 29.48% (implant level) or 46.83% (patient-based);20 for peri-implantitis
Table. Included studies reporting on the prevalence of peri-implant mucositis and peri-implantitis.

<table>
<thead>
<tr>
<th>No.</th>
<th>Study Type</th>
<th>Country</th>
<th>Study</th>
<th>Case definitions for mucositis</th>
<th>Prevalence of mucositis</th>
<th>Prevalence of peri-implantitis (PI)</th>
<th>Possible associated risk factors (implant type/surface, keratinized mucosa, history of periodontitis, diabetes, smoking, prosthetics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cross-sectional</td>
<td>Spain</td>
<td>Aguirre-Zorano et al. 2015 37</td>
<td>Mucositis: BOP, clinical signs of inflammation, no BL (< 1.5 mm)</td>
<td>24.7%</td>
<td>15.1%</td>
<td>Stat. sign. association for plaque index, periodontitis and implant location with mucositis.</td>
</tr>
<tr>
<td>2</td>
<td>Cross-sectional</td>
<td>Spain</td>
<td>Canullo et al. 2016 38</td>
<td>Mucositis: n.r.</td>
<td>n.r.</td>
<td>10.3%</td>
<td>n.r.</td>
</tr>
<tr>
<td>3</td>
<td>Cross-sectional</td>
<td>Italy</td>
<td>Cecchinato et al. 2014 39</td>
<td>Mucositis: BOP, BL≤0.5 mm</td>
<td>65%</td>
<td>12% (within 10 y)</td>
<td>n.r.</td>
</tr>
<tr>
<td>4</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>Daubert et al. 2015 40</td>
<td>Mucositis: BOP, gingival inflammation, no BL</td>
<td>48%</td>
<td>26%</td>
<td>No association with smoking</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Country</td>
<td>Study Design</td>
<td>Cohort</td>
<td>Peri-implant Disease</td>
<td>Patient Level</td>
<td>Implant Level</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>--------------</td>
<td>--------</td>
<td>---------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Derks et al.</td>
<td>2016</td>
<td>Sweden</td>
<td>Cross-sectional</td>
<td>588 patients/2277 implants</td>
<td>Mucositis: BOP/SUP; no BL</td>
<td>Patient level: 32%</td>
<td>Implant level: > 2 mm: 14.5% > 3 mm: 10.1% > 4 mm: 5.9%</td>
</tr>
<tr>
<td>Fransson et al.</td>
<td>2005, 2008</td>
<td>Sweden</td>
<td>Cross-sectional</td>
<td>662 patients/3413 implants</td>
<td>Mucositis: BOP; bone level ≥3 threads & BL ≥0.6mm from 1 y after loading</td>
<td>Patient level: n.r.</td>
<td>Implant level: > 90%</td>
</tr>
<tr>
<td>Francetti et al.</td>
<td>2019</td>
<td>Italy</td>
<td>Retrospective</td>
<td>77 patients/384 implants</td>
<td>Mucositis: n.r.</td>
<td>Patient level: 12.7% (after 5y)</td>
<td>No sign. Risk factors: smoking (p=0.755), periodontitis (p=0.399)</td>
</tr>
<tr>
<td>French et al.</td>
<td>2019</td>
<td>Canada</td>
<td>Retrospective cohort study</td>
<td>2060 patients/4591 implants</td>
<td>Mucositis: Implant mucosal Index (IMI)</td>
<td>Implant level: Risk factors with effect on BL: autoimmune disease, heavy smoking, bisphosphonate therapy, implant location, diameter and design, and BL</td>
<td></td>
</tr>
</tbody>
</table>

Continue
| Study | Year | Country | Study Design | Cross-sectional Mucositis | Patient level | Implant level | Bone level implants: | Tissue level implants:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Katofuchi et al.</td>
<td>2018</td>
<td>USA</td>
<td>9</td>
<td>Cross-sectional</td>
<td>Mucositis: n.r.</td>
<td>n.r.</td>
<td>Pl: BOP/SUO, BL≥2mm after initial remodeling, PD≥4mm</td>
<td>n.r.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Emergence profile >30 degrees is a significant risk indicator for Pl, convex profile additionally for bone-level implants.</td>
<td></td>
</tr>
<tr>
<td>Koldsland et al.</td>
<td>2010 & 2011</td>
<td>Norway</td>
<td>10</td>
<td>Cross-sectional</td>
<td>Mucositis: inflammation (bleeding, BOP, SUP), no BL</td>
<td>Patient level: 39.4%</td>
<td>Patient level: 47.1%</td>
<td>Implant level: 27.3%</td>
</tr>
<tr>
<td>Konstantinidis et al.</td>
<td>2015</td>
<td>Germany</td>
<td>11</td>
<td>Cross-sectional</td>
<td>Mucositis: BOP, no BL (BL<2mm)</td>
<td>Patient level: 64.5%</td>
<td>Patient level: 12.9%</td>
<td>Implant level: 57.0%</td>
</tr>
<tr>
<td>Marrone et al.</td>
<td>2013</td>
<td>Belgium</td>
<td>12</td>
<td>Cross-sectional</td>
<td>Mucositis: PD≤5mm, BOP, BL≤2mm</td>
<td>Patient level: 31%</td>
<td>Patient level: 37%</td>
<td>Implant level: 38%</td>
</tr>
<tr>
<td>Meijer et al.</td>
<td>2014</td>
<td>Netherlands</td>
<td>13</td>
<td>Prospective cohort study</td>
<td>Mucositis: BOP/SUP, BL<2mm</td>
<td>Incidence:</td>
<td>Incidence:</td>
<td></td>
</tr>
</tbody>
</table>

Continue
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Design</th>
<th>Study Population</th>
<th>Mucositis:</th>
<th>Patient level:</th>
<th>Implant level:</th>
<th>Additional Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Mir-Mari et al. 2012</td>
<td>Spain</td>
<td>Cross-sectional</td>
<td>Mucositis: BOP, BL< 2 implant threads</td>
<td>Patient level: 38.8%</td>
<td>Patient level: 16.3%</td>
<td>n.r.</td>
<td>Stat. sign. association (p=0.04) betw. compliance to maintenance therapy and peri-implantitis. Compliance was associated with 86% fewer conditions of peri-implantitis.</td>
<td></td>
</tr>
<tr>
<td>15 Monje et al. 2017</td>
<td>Spain</td>
<td>Cross-sectional</td>
<td>Mucositis: BOP/SUP, swelling, BL<2 mm</td>
<td>Patient level: n.r.</td>
<td>Patient level: Stat. sign. association (p=0.04) betw. compliance to maintenance therapy and peri-implantitis. Compliance was associated with 86% fewer conditions of peri-implantitis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Papaspyridakos et al. 2018</td>
<td>USA</td>
<td>Cross-sectional</td>
<td>Mucositis:</td>
<td>Implant level: 31.5% (estim. 5 y)</td>
<td>Implant level: 10% (estim. 5 y)</td>
<td>n.r.</td>
<td>High plaque index was associated stat. sign. with bone loss.</td>
<td></td>
</tr>
<tr>
<td>17 Renvert et al. 2014</td>
<td>Sweden</td>
<td>Cross-sectional, retrospective</td>
<td>Mucositis: BOP/SUP, edema, BL<2mm</td>
<td>Patient level: 36.3% Peri-implant health/mucositis</td>
<td>Patient level: 63.7% (172 patients)</td>
<td>n.r.</td>
<td>OR of having peri-implantitis was stat. sign for history of cardio-vascular disease (8.7) and of periodontitis (4.5). No association betw. PI and smoking or gender.</td>
<td></td>
</tr>
<tr>
<td>18 Renvert et al. 2018</td>
<td>Sweden</td>
<td>Cross-sectional</td>
<td>Mucositis: BOP/SUP, no BL</td>
<td>Implant level:</td>
<td>Implant level:</td>
<td>n.r.</td>
<td>Patients with ≥3 implants at 10 years had a higher risk for PI at 20 y. No predictive value for PI at 20y for radiographic evidence of periodontitis, mucositis, smoking.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Design</td>
<td>Mucositis:</td>
<td>Patient level:</td>
<td>Patient level:</td>
<td>Significant association between mucositis and smoking (OR: 3.77).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rinke et al. 2011 [8]</td>
<td>Germany</td>
<td>Cross-sectional</td>
<td>PD ≥ 4 mm, BOP</td>
<td>44.9%</td>
<td>11.2%</td>
<td>Smoking (OR: 2.57) and lack of keratinized mucosa (OR: 3.89) were associated with PI.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roos-Jansaker et al. 2006 [8]</td>
<td>Sweden</td>
<td>Cross-sectional</td>
<td>BOP/SUP, BL ≤ 2 mm</td>
<td>48.5%</td>
<td>20%</td>
<td>Smoking (OR: 2.57) and lack of keratinized mucosa (OR: 3.89) were associated with PI.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwarz et al. 2017 [8]</td>
<td>Germany</td>
<td>Cross-sectional</td>
<td>BOP, changes at bone level compared to baseline</td>
<td>41.6%</td>
<td>13.9%</td>
<td>Smoking (OR: 2.57) and lack of keratinized mucosa (OR: 3.89) were associated with PI.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenenbaum et al. 2017 [8]</td>
<td>France</td>
<td>Prospective cohort study</td>
<td>BOP; no BL</td>
<td>73.1%</td>
<td>15.4%</td>
<td>Smoking (OR: 2.57) and lack of keratinized mucosa (OR: 3.89) were associated with PI.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
values vary significantly between those reported on implant level (21.7%, 9.25%, 1.1–85%, 12.8%) and those on patient level (19.83%, 0–39.7%, 18.5%). For longer evaluation periods (over 9 years of functional loading) data from a retrospective and cross-sectional analysis show a prevalence for peri-implantitis of 45% (patient level, 14.5% of these patients with moderate to severe disease and 57% after 10 years of function.

Methodological inconsistencies and shortcomings of the reporting studies led to these significant variations of the prevalence for peri-implant diseases making thus difficult to globally estimate the real impact of peri-implant biological complications. Despite the recommendations for quality improvement in peri-implant disease research of the VIII-th EWP, only few study protocols have applied these. Since 2018, according to the new classification of periodontal diseases of the WWP 2017 clear definitions for peri-implant health, mucositis and peri-implantitis were made and these should ease and assure a more reliable evaluation of the prevalence, extent and severity of peri-implant diseases in epidemiological studies. Nonetheless, after the search of the current review, no single study applied entirely the newly proposed definition criteria for peri-implantitis (BOP/SUP, pocket depths ≥6mm, bone level ≥3mm of the most coronal portion of the intraosseous part of the implant). Either bone loss thresholds were unclearly defined, or related to 2 mm bone loss or to implant threads, and/or lower values for included peri-implant pocket depths (i.e., 4 or 5 mm) were used (Table).

Analyzing closer the current evidence, following factors may affect the reported prevalence of peri-implant diseases.

Definition of peri-implantitis

More than two decades ago, peri-implantitis has been defined as an infectious pathological condition of the peri-implant tissues. Following the 1st European Workshop on Periodontology (EWP) in 1993 described the term peri-implantitis in relation to inflammatory processes at osseointegrated dental implants with the clinical signs of pocket formation and bone resorption following the anticipated initial bone remodeling. This definition is nowadays still correct and applicable. Nonetheless, the lack of clear thresholds to define pathological values for peri-implant pocket depths and loss of the supporting bone after functional loading led to various applications of this definition in clinical studies assessing the prevalence, incidence and extent of peri-implantitis. Therefore, in the VIIIth EWP in 2012 it was agreed that the presence of clinical inflammation together with a peri-implant bone level of 2mm from the expected level after bone remodeling should be considered as criteria for defining peri-implantitis in clinical studies. When reporting incidence and baseline radiographs are available, the bone loss cutoff is set at 1–1.5mm.

Despite these guidelines, the definitions used in clinical studies were inconsistent: most studies used the same threshold for peri-implant pocket depths (>5mm), but the various levels for bone loss resulted in a large range of disease occurrence. Studies reporting low prevalences for peri-implantitis (implant level) used a high bone loss thresholds: for bone loss of 5 mm 1%, 8.80–22.20%; for bone loss ≥3mm: 9%, 0.37%. On the other side, high prevalences were obtained when bone loss was set at low values (< 1.5mm) or was not mentioned: 77% (0.5 mm), 47% (0.4mm). Logically, different bone loss

<table>
<thead>
<tr>
<th>Study</th>
<th>Multicenter (Europe: Sweden, Italy, USA)</th>
<th>RCT</th>
<th>Mucositis: n.r.</th>
<th>Patient level: 1%</th>
<th>Implant level: 0.4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zetterqvist et al. 2010</td>
<td>112 patients/304 implants after 5 y</td>
<td>96 patients university</td>
<td>PD: pocket depth; BOP: bleeding on probing; SUP: suppuration; BL: bone loss; n.r.: not reported; stat. sign.: statistically significant; PU: peri-implantitis; KMW: keratinized mucosa width; OR: odds ratio; RCT: randomized controlled trial; y: years</td>
<td>After 5 y no increased risk of peri-implantitis for fully etched implants compared to hybrid-designed implants.</td>
<td></td>
</tr>
</tbody>
</table>
thresholds reflect various degrees of disease severity and if these define the disease, then consecutively its prevalence is miscalculated. Thus, uniformity in the reported prevalence can be seen when studies used the same bone loss levels: for bone loss 1.5-3 mm 14.5%, 24 12.9%, 25,33,34,36,37 8.8%, 36 7.3%, 33 6.2%, 35 14.3%. 29

Considering the new Classification for peri-implant conditions of the WWP 2017, reporting the prevalence and incidence for plaque-induced peri-implant diseases should be more homogenous and shall provide a realistic view of the global burden of peri-implant diseases. 16,17,19

Timepoint of assessment

Both peri-implant mucositis and peri-implantitis have an infectious etiology based on the accumulation of a biofilm composed of periodontal pathogens on the implant surface. 17,38,39,40,41 It is believed that peri-implant mucositis is the precursor for peri-implantitis, however, the histopathological and clinical conditions initiating this conversion are still not elucidated. 19 Since peri-implantitis represents rather a chronic form of disease implying time for the osseous destruction, it seems appropriate to report on the prevalence of peri-implantitis after sufficient time in function. Analyzing the existing reports with respect to timepoint of evaluation, it seems that prevalences of peri-implantitis do not vary strongly. Studies evaluating the prevalence of peri-implantitis after 5 years of function and for a bone-loss threshold over 2 mm report similar values (implant level) compared to those for longer observation periods (over 9 years): at 5 years 12.9%, 35 16.9%, 25 9.6%, 42 8.80%, 36 10.9%, 43 1.80%, 44 at over 9 years: 9%, 30 6.6%, 45 16%- 26%, 34 14.5% 24 and 29.7%. 25 The differences that can be seen in the above mentioned values relate to the different thresholds for bone loss that was included in the case definition (0.5 mm vs. > 2 mm), highlighting again the importance of a consensus in the establishing a clear cutoff for peri-implant bone loss. Renvert et al. 46 reported on the prevalence of peri-implant diseases with the longest follow-up of over 20 years in function and obtained similar values to those reported in the literature for 10 years: peri-implantitis 22.1%. Thus, the present data suggest that function time has only a limited effect on the development of peri-implantitis. 13,14,32 Nonetheless, it seems relevant that clinical studies assessing the prevalence of peri-implantitis include cases with similar periods of function. Several studies mixed shorter with longer loading periods: 6 months - 17 years, 37 10-46 months, 47 1-14 years, 33 1-11 years, 39 1-18 years, 48 which may have lead to a possible underestimation of the reported prevalence/incidence of peri-implantitis.

Level of reporting: implant vs. subject level

Assessing the global burden of peri-implant diseases is a matter of patients/humans as in any other chronic systemical diseases. When prevalences of any type of disease are reported, these refer to the number of subjects affected by that disease at that moment. Therefore, it seems quite appropriate to similarly evaluate the prevalence of peri-implant pathologies at a subject level. This was also stressed out in 2012 at the VIII-th EWP consensus workshop where the impact of peri-implant diseases on individuals should be in the focus and not that on individual implants. Research assessing the prevalence of peri-implant diseases should thus be evaluated on subject-level analysis. 13

Several previous clinical studies reported the prevalence only on implant-level making thus difficult to estimate the global impact of the disease. 28,49,50,51 Moreover, higher prevalences are reported on patient-level as opposed to implant-level: 14.5% vs. 8.0%, 24 16.4 % vs. 7.3%, 33 2.5 vs. 0.9, 52 12.7% vs. 4.6, 53 4.7 % vs. 3.6%, 54 25.3 % vs. 16.7%. 55 However, in the past 5 years, the majority of clinical studies reporting on the prevalence of peri-implantitis applied the recommendations of the VIII-th EWP and included patient-level analyses. 24,25,33,34,35,37,53,54,55

Evaluated population

The majority of the studies reported prevalences for peri-implant diseases investigating patients either from university or from private clinics. 28,31,48,59 These analyses rely however on “convenience samples” of various size bearing with it a high sensitivity for selection bias not representing the global/common implant population. 26,57 Only few studies reported the prevalence based on random patient selection 25 or
based on multicenter data from subjects in private and university clinics24,47,58 or. The VIIIth EWP from 2012 recommended for evaluations in clinical studies of the prevalence of peri-implant diseases random patient selection from multivariate treatment environments of adequate sample sizes.9,26

Various prevalences for peri-implantitis have been reported when populations with additional of conditions (i.e., diabetes, rheumatoid arthritis, smokers, history of periodontitis, adherence to maintenance therapy) have been investigated to assess risk factors of developing peri-implantitis. Prevalence in patients with a history of periodontitis seem have a higher prevalence of the disease which remains stable over time; thus, studies evaluating the presence of peri-implantitis under 5 years of function report values of 14.3–26.1% (bone loss>2mm) or 8.9–17.4% (bone loss > 3 mm) as opposed to 6.1% or 3% in patients without residual periodontitis.29 Similar values were observed also in more severe cases with bone loss > 5 mm (22.2%, after 79 years)30 or > 0.2 mm annual bone loss at 8.25 y (26%).59 Similarly, in non-smokers implant level based prevalence of peri-implantitis reached 7.44% for a functional loading period of 6 months–5 years30 and 9% after 10 years.30 Additionally, higher prevalences were reported for patients not attending a maintenance program (28.80%)43 as opposed to those in regular prophylaxis (after 5 years: 10.8%, 1.8%; after 10 years: 9%).30,43,44 Another type of population with various reports on the prevalence of peri-implantitis are diabetic patients. Ferreira et al.60 reported a prevalence (patient-level) of 24% as opposed to 7% of non-diabetic patients. On the other side, Tawil et al.61 reported occurrence (4.25%) of peri-implantitis only in poor controlled diabetes (HbA1c level 7-9%). Whether these patient conditions represent risk factors for developing peri-implantitis is to be discussed in a further paper of this issue.

Implants placed in pristine vs. augmented sites

Outcome of a recent systematic review62 indicated that implants placed in augmented sites performed slightly less effective after a mean observation period of at least 10 years compared with implants placed in pristine bone when assessing peri-implantitis (17.8% vs. 10.3%) and implant failure rates (3.6% vs. 2.5%), respectively. Patient samples included in that systematic review,62 however, differed with respect to clinical characteristics such as history of treated periodontitis and materials used for augmentation procedures. Moreover, none of the studies including augmentation procedures adopted the same surgical protocol, thus enhancing heterogeneity due to sample selection. Hence, considering the lack of representation of various augmentation techniques used and of the variety of implant designs, the results of that systematic review62 should be interpreted with caution.

References

Prevalence of peri-implant diseases- a critical review on the current evidence

