EFICIÊNCIA HOSPEDEIRA DE OITO CULTIVARES DE BANANEIRA A FITONEMATÓIDES (¹)

LEILA LUCÍ DINARDO-MIRANDA (²) e LUIZ ANTONIO JUNQUEIRA TEIXEIRA (³)

RESUMO

Os cultivares de bananeira (Musa spp.) Grande Naine, Nanicão Jangada, Nanicão (Grupo AAA), Enxerto, Prata, Prata Zulu, Maçã e Mysore (Grupo AAB) foram plantados em campo e avaliados quanto à eficiência hospedeira a nematóides. Todos eles apresentaram elevadas populações de Meloidogyne arenaria raça 1, sendo considerados, portanto, hospedeiros favoráveis dessa espécie. Os cultivares do grupo AAA e Mysore foram também hospedeiros favoráveis de Radopholus similis, enquanto os demais do grupo AAB se comportaram como hospedeiros pouco favoráveis. Helicotylenchus dihystera foi detectado em baixas populações, em raízes e no solo da rizosfera de todos os cultivares.

Termos de indexação: Musa spp., cultivares, hospedeiros, Radopholus similis, Meloidogyne arenaria raça 1, Helicotylenchus dihystera.

ABSTRACT

HOST REACTION OF EIGHT BANANA CULTIVARS TO PLANT PARASITIC NEMATODES

The host reaction of eight banana cultivars (Musa spp.) to nematodes was assessed in a field experiment. Three cultivars evaluated were members of AAA Group (Grande Naine, Nanicão and Nanicão Jangada) and five belonged to AAB Group (Prata, Enxerto, Prata Zulu, Maçã and Mysore). All cultivars were infested by Meloidogyne arenaria race 1, rated as efficient hosts. The AAA Group cultivars and Mysore were also efficient hosts to Radopholus similis, whereas Prata, Enxerto and Maçã were not. Helicotylenchus dihystera was detected at low density populations in soil and root samples of all cultivars.

Index terms: Musa spp., cultivars, host reaction, Radopholus similis, Meloidogyne arenaria race 1, Helicotylenchus dihystera.

(¹) Recebido para publicação em 9 de novembro de 1995 e aceito em 26 de abril de 1996.
(²) Estação Experimental de Piracicaba, Instituto Agronômico (IAC), Caixa Postal 28, 13400-970 Piracicaba (SP).
(³) Seção de Fruticultura Tropical, IAC.
1. INTRODUÇÃO

No Brasil, diversos nematódidos atacam a cultura da bananeira, sendo Radopholus similis o mais importante (Almeida, 1992; Ferraz, 1995). A gravidade dos seus danos pode ser ilustrada com os resultados dos experimentos realizados por Jahen & Zambon (1991) e Jahen et al. (1991), em áreas severamente infestadas no Estado de São Paulo. Esses autores verificaram que a redução nas populações do nema-
tóide, mediante o uso de nematicidas, no momento de renovação dos bananais, resultou em aumento de produção do cultivar Nanicão, até de 215% em rela-
çãà às parcelas-testemunhas (sem nematicidas).

Espécies de Meloidogyne são também muito fre-
quientes (Zem, 1982). Embora consideradas de im-
portância secundária, algumas culturas isentas de R. similis, revelando plantas em declínio, com folhas secas e cachos atrofiados, mostraram-se severamente infestadas por Meloidogyne (Sharma & Sher, 1973; Ponte et al., 1977; Zem, 1982), evidenciando que essas espécies têm sido também grandes destruidoras de raízes, principalmente nas regiões mais áridas do Brasil. Por isso, em determinados locais, seus danos podem ser comparados aos de R. similis (Moreira, 1995).

Devido aos grandes prejuízos que vêm causando à produção, os nematódides são considerados o prin-
cipal problema da bananiculatura no Estado de São Paulo (Foltran & Piza Junior, 1991) e, assim como em outras partes do mundo (Pinochet, 1992), seu controle é prioridade para o desenvolvimento da cultura.

Pesquisadores, em todo o mundo, têm procurado determinar o comportamento de cultivares de bana-
neira quanto à resistência a esses parasitos (Zem & Rodrigues, 1978; Pinochet, 1992). Em relação a R. similis, são conhecidas as suscetibilidades de alguns cultivares do subgrupo Cavendish (AAA), en-
tre eles Nanicão, além de outras do grupo AAA, como Gros Michel (Zem & Rodrigues, 1978; Gowen & Quénehervé, 1990). Os cultivares Prata e Mysore (AAB) são considerados hospedeiros tolerantes ou moderadamente resistentes a R. similis (Zem, 1982). Em relação a outras espécies de nematódides, o com-
portamento de cultivares é pouco conhecido. Assim, em ensaio estabelecido na região do Planalto Pau-
lista, com o objetivo de selecionar cultivares para as condições locais, procurou-se avaliar a eficiência hospedaria desses cultivares a nematódides.

2. MATERIAL E MÉTODO

Com o objetivo de avaliar aspectos agronômicos, tais como desenvolvimento vegetativo e produção de diversos cultivares de bananeira, no Planalto Paulista, instalou-se um ensaio no município de Pompéia (SP), em parceria com a Fundação Shunji Nishimura de Tecnologia. No plantio, efetuado em 10 de fevereiro de 1992, utilizaram-se mudas descor-
ticadas, provenientes do Banco de Germoplasma do Instituto Agronômico, em Tietê (SP). O delineamento experimental foi de blocos ao acaso, com seis repe-
tições. As parcelas constaram de 16 plantas, em espa-
çamento 3 x 2 m e os cultivares estudados foram Grande Naine, Nanicão Jangada e Nanicão, perten-
centes ao grupo AAA; Enxerto e Prata (seleção do Instituto Biológico), Prata Zulu, Mysore e Maça, do grupo AAB.

Com o desenvolvimento da cultura, observou-se a necessidade de avaliar as condições fitossanitárias dos cultivares. Para estimar as populações de nema-
tódides, realizaram-se amostragens em 15 de agosto de 1995. Em cada parcela, coletou-se uma amostra composta por raízes e solo da rizosfera de duas plan-
tas. Como cada touceira de bananeira era composta por uma planta-mãe (com cachos ainda não colhidos) e um número variável de filhotes em diferentes está-
dios, as amostras foram retiradas próximo ao pse-
docaule do filhote selecionado para substituir a planta-mãe após a colheita.

Para extração dos nematódides do solo, empregou-
-se o processo do peneiramento combinado com o fúnil de Baermann modificado (Oostenbrink, 1960). A mesma técnica foi utilizada para extração de espé-
cimes das raízes, submetendo-as, porém, a prévia trituração em liquidificador contendo volume apro-
ximado de 500 mL de água, por 30 segundos.

Para a análise estatística, os dados foram trans-
formados em log (x + 1) e as médias, comparadas pelo teste de Tukey, ao nível de 1%.
3. RESULTADOS E DISCUSSÃO

As espécies de nematóides identificadas na área do ensaio foram Helicotylenchus dihystera, Meloidogyne arenaria raça 1 e Radopholus similis, cujas populações nas raízes e no solo da rizosfera de cada cultivar são apresentadas no quadro 1.

Todos os cultivares atuaram como hospedeiros de H. dihystera; no entanto, as populações encontradas foram bastante inferiores às quais detectadas em diversos levantamentos em áreas produtoras no Brasil (Zem, 1982), estando, possivelmente, aquém do nível populacional capaz de causar prejuízos. Essa espécie é muito comum em bananais (Almeida, 1992), mas a sua patogenicidade à cultura não é conhecida. Todos os cultivares se mostraram hospedeiros favoráveis de M. arenaria raça 1. As raízes das plantas exibiam grande número de galhas, de tamanhos variados, tanto no ápice como ao longo delas. Cortes longitudinais das raízes infestadas revelaram a presença de várias fêmeas maduras, com grande massa de ovos. Altas populações dessa espécie foram detectadas também no solo.

A presença, frequente em bananais, de nematóides do gênero Meloidogyne, muitas vezes em altas densidades populacionais, mostra a necessidade de estudar os danos causados à cultura por tais parasitos. Essas espécies, devido ao caráter endêmico, também pre- cupam pelo perigo de ser veiculadas para novas áreas. Além disso, a presença de Meloidogyne no solo pode prejudicar cultivos subsequentes à bana- neira e restringir, muito, as espécies de plantas passíveis de ser utilizadas em programas de rotação, visando ao controle de outros nematóides.

Esses resultados confirmam a idéia geral de que cultivares do subgrupo Cavendish estão entre os mais suscetíveis a R. similis. Segundo Gowen & Quénéhervé (1990), não é bem conhecido o nível populacional que pode ser considerado como limiar de

Quadro 1. Número de Helicotylenchus dihystera (Hd), de juvenis de segundo estádio de Meloidogyne arenaria raça 1 (Ma) e de Radopholus similis (Rs), em 100 g de raízes e em 250 mL do solo da rizosfera dos oito cultivares de bananeira estudados em Pompéia (SP), 1995

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Número de nematóides(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hd</td>
</tr>
<tr>
<td></td>
<td>Raízes</td>
</tr>
<tr>
<td>Grupo AAA</td>
<td></td>
</tr>
<tr>
<td>Grande Naine</td>
<td>1.475,0 a</td>
</tr>
<tr>
<td>Nanicão</td>
<td>1.974,3 a</td>
</tr>
<tr>
<td>Nanicão Jangada</td>
<td>5.102,7 a</td>
</tr>
<tr>
<td>Grupo AAB</td>
<td></td>
</tr>
<tr>
<td>Enxerto</td>
<td>7.471,7 a</td>
</tr>
<tr>
<td>Prata</td>
<td>4.173,0 a</td>
</tr>
<tr>
<td>Prata Zulu</td>
<td>5.422,7 a</td>
</tr>
<tr>
<td>Maçã</td>
<td>2.290,0 a</td>
</tr>
<tr>
<td>Mysore</td>
<td>1.309,3 a</td>
</tr>
</tbody>
</table>

(1) Médias na mesma coluna, seguidas por letras distintas, diferem entre si pelo teste de Tukey ao nível de 1%.
dano econômico causado por *R. similis* aos cultivares suscetíveis, especialmente do grupo AAA, uma vez que existe grande variabilidade quanto ao vigor do sistema radicular entre os cultivares de banana. No entanto, resultados de pesquisas em diferentes áreas da África e da América Latina levaram esses autores a sugerir que populações iguais ou superiores a 2.000 exemplares por 100 g de raízes são potencialmente capazes de causar prejuízos econômicos em cultivares comerciais de banana. Dessa forma, nas condições do presente ensaio, *R. similis* deve estar causando prejuízos significativos aos três cultivares do subgrupo Cavendish estudados. A maioria dos cultivares do grupo AAB apresentou populações de *R. similis* significativamente mais baixas que aquelas do grupo AAA. Assim como observado por Zem (1982) para o ‘Prata’, os cultivares Enxerto, Prata Zulu e Maçã mostraram-se hospedeiros desfavoráveis para *R. similis* e poderiam ser considerados como alternativa para plantio em áreas infestadas por esse parasito.

A exceção no grupo AAB foi representada pelo ‘Mysore’, em cujas raízes foi assinalada grande população de *R. similis*. No presente trabalho, esse cultivar se comportou como um hospedeiro tão bom quanto o Naniço. A eficiência hospedeira de Mysore a *R. similis* já havia sido detectada por Zem (1982). Gouhart et al. (1988) também encontraram *R. similis* reproduzindo-se em Mysore, o que os levou a alertar para o fato de esse cultivar, por permitir o desenvolvimento do nematóide sem sofrer danos aparentes, poder atuar como fonte de inóculo para outras lavouras de bananeiras altamente suscetíveis.

REFERÊNCIAS BIBLIOGRÁFICAS

