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ABSTRACT

A large class of predator-prey models can be written as a non-
linear dynamical system in one or two variables (species).
In many contexts, it is necessary to introduce a control into
these dynamics. In this paper we focus on models of two
species, and assume, as is common in mathematical ecology,
that the control corresponds to a proportional removal of the
predator population. Six controller design techniques are ap-
plied to the Lotka–Volterra model, which is thus used as a
benchmark to evaluate and compare these techniques in an
ecological context.

KEYWORDS: Adaptive control of oscillations, Control Lia-
punov function, Immersion and Invariance, Induced internal
feedback, Static sliding-mode control, Uncertain inputs.

RESUMO

Uma ampla classe de modelos do tipo predador-presa pode
ser escrita como um sistema dinâmico não linear em uma
ou duas variáveis (espécies). Em diversos contextos é ne-
cessário introduzir um controle nessas dinâmicas. Este ar-
tigo foca-se em modelos de duas variáveis. Assume-se, de
acordo com a praxe em ecologia matemática, que o controle
corresponde à remoção de uma proporção da população dos
predadores (controle proporcional). Seis técnicas de projeto
de controladores são aplicados ao modelo Lotka–Volterra, o
qual é utilizado como um padrão ou “benchmark” para ava-

liar e comparar estas técnicas em um contexto ecológico.

PALAVRAS-CHAVE : Controle adaptativo de oscilações,
Controle a modo deslizante estático, Entradas incertas, Fun-
ção de Liapunov com controle, Imersão e invariância, Reali-
mentação interna induzida.

1 INTRODUCTION

Physical, chemical and biological systems are inherently
nonlinear (May, 1973; Slotine e Li, 1991; Khalil, 1992;
Utkin, 1992). A large class of models that describe predator-
prey population dynamics can be described as a nonlinear
dynamic system. In this paper models of two species are
considered and they have the following generic form

ẋ = f1(x) + f2(x)y (1)

ẏ = f3(x)y (2)

where the state variablex denotes the prey density, the state
variabley denotes the predator density, the functionsf1 and
f3 describe the growth functions of the prey and predator
respectively andf2 is a predator consumption function.

One of the simplest models of predator-prey interaction was
formulated in the 1920s by A. J. Lotka and V. Volterra and
is thus known as the Lotka–Volterra model. It has been ex-
tensively studied because it is a paradigm for more realistic
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models, and has the following form

{
ẋ = r1 x− a x y,
ẏ = −r2 y + b x y,

(3)

where the parameterr1 is the growth rate of the prey,r2 is
the mortality rate of the predator,a, b represent the interac-
tion coefficients between the species; all parameters are pos-
itives,f1 = r1 x, f2 = −a x, f3 = −r2 + b x. These equa-
tions constitute the simplest representation of the essence of
the nonlinear predator-prey interaction (May, 1973; Gurney
e Nisbet, 1998).

There have been many attempts to consider changing the
Lotka–Volterra dynamics (3) by the introduction of controls
and the main objective of this paper is to briefly present both
techniques that have already been used, as well as some that
have not and compare them with a new technique proposed
in this paper.

We will briefly discuss the other techniques in section 3.
Here we limit ourselves to a brief description of the proposed
control.

Population dynamic models with threshold
control

The paper focuses on the introduction of an exogenous con-
trol in models of populational dynamics of two species. The
general model is as follows:

ẋ = f1(x) + f2(x) y, (4)

ẏ = f3(x) y − y u2, (5)

where the controlu2 corresponds to a proportional removal
of the predator population. We note that the dynamical sys-
tem (4), (5) is in the so called regular form (Utkin, 1992), also
called triangular or chained form. We can choosey = ŷ to
control the subsystem (4) so thatx has some desired behav-
ior, and then designu2 so thaty in (5) tracksŷ which is the
desired “input” for (4). However, in an ecological context,
the controlling actionu2 must satisfy certain restrictions or
desirable characteristics that are discussed in the following
section.

2 DESIRABLE CHARACTERISTICS OF
CONTROL IN AN ECOLOGICAL CON-
TEXT

Throughout this paper, the control term is to be understood
as removal of a certain species.

In this context, the control must have the following charac-
teristics:

• Implementation simplicity: (i) the mathematical ex-
pression of the control must be as simple as possible,
(ii) the control must not depend on the system parame-
ters so that they do not need to be estimated.

• Nonnegative control. This corresponds to the propor-
tional removal of one of the species. In other words, it
is assumed that the control corresponds only to removal,
i.e. we consider “harvesting” of a certain species.

• Minimal monitoring. Refers to the number of popula-
tion densities that need to be monitored to implement a
certain control. In the context of the two species model
(4), (5) if only one density is used to design feedback,
we refer to this as output feedback; if both densities are
used, then we call this state feedback.

• Promotion of coexistence. Both species must reach
sustainable equilibrium levels, in which the populations,
in appropriate units, are both positive.

Finally, as far as units are concerned, note the following:

Density unit: The population density is the size of the pop-
ulation in relation to some space unit. Generally it is
evaluated as the number of individuals or a population
biomass, per unit area or volume.

Time unit: Time in ecological systems is usually measured
in days, weeks or years.

3 GENERAL APPROACHES FOR CON-
TROL OF NONLINEAR DYNAMIC SYS-
TEMS

In this section we briefly present six different techniques of
nonlinear system design applied to the Lotka–Volterra (3) as
a benchmark, with the objective of comparing them to the
proposed control.

The set of general design methods of controllers for nonlin-
ear systems can be divided in two subsets in the ecological
context, as follows:

Techniques already applied to population dynam-
ics:

• Several papers on the control of nonlinear ecological
system models under perturbations have been devoted
to the study of vulnerability and non-vulnerability of
ecosystems subjected to continual, unpredictable, but
bounded disturbances due to changes in climatic con-
ditions, diseases, migrating species, etc. (Beddington
e May, 1977; Lee e Leitmann, 1983; Steele e Hender-
son, 1984; Vincent et al., 1985).
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• Fradkov e Pogromsky (1998) applied the so called
speed gradient method of adaptive control of oscil-
lations to control the populations of two competitive
species. Their method was specific to the Lotka–
Volterra model of population dynamics.

• Emel’yanov et al. (1998) presented a general method-
ology, referred to as induced internal feedback, for the
control of uncertain nonlinear dynamic systems. It is
based on on-off control as well as continuous versions
of the latter and applied to the Lotka–Volterra system.

• The proposed control is based on the application of con-
trol Liapunov functions (Sontag, 1989), exploring the
structure of the predator-prey systems and the backstep-
ping idea (Sepulchre et al., 1997) for the regular form
(Utkin, 1992), as well as using the concept of real and
virtual equilibria (Costa et al., 2000) to derive an on-off
or variable structure control.

Techniques not previously applied to population
dynamics:

• Junger e Steil (2003) presented a new type of sliding
motion which results from a special choice of the sliding
surfaces. They define sliding surfaces such that these
become explicitly dependent on the outputs of the dis-
continuous block. Under this design, a special sliding
mode characterizes the system dynamics, which they
named static sliding mode, because it occurs along the
static contour of the closed-loop systems.

• A new method to design asymptotically stabilizing and
adaptive control laws for nonlinear systems is presented
in Astolfi e Ortega (2003). The method relies upon the
notions of system immersion and manifold invariance
and, in principle, does not require the knowledge of a
(control) Lyapunov function.

3.1 Design of the controller according to
Emel’yanov et al.

The following theorem from Emel’yanov et al. (1998) is pre-
sented.

Theorem 1 Consider the system

ẋ = ϕ1(x, y)
ẏ = ϕ2(x, y) +B(t)u (6)

z = [x y]T , B = diag(b1, . . . , bn), bi(·) ∈
[

1
L , L

]
, ϕ1, ϕ2

are continuous, Lipschitz locally and unknown.

There is a continuous control u such that the trajectories of
the system (6) approach the setG and enter in it in finite time,

where
G := {z : ‖s‖ ≤ σ(x, t)}

with
s := y − v(x, t),

in closed loop, v(x, t) is the trajectory to be tracked, σ(x, t)
is a tracking error tolerance. The control has the following
form:

u = − s

‖s‖Ψ (‖s‖ , σ)F (z, t).

Emel’yanov et al. procedure applied to the
Lotka–Volterra model with control only in
the predator

Consider system (3) with control applied only to the preda-
tor: {

ẋ = r1 x− a x y,
ẏ = −r2 y + b x y − u.

Procedure:

1. Choose the equilibrium point, at which is desired to sta-
bilize the system, for a prey densityM . It must satisfy

M > sup
(r2
b

)
,

and the predator density must satisfy

yeq =
r1
a
.

2. Suppose that it is necessary to maintainx close toM ,
i.e., |x−M | < δ. Introduce the constantsL1, L2 andσ
(σ as an induced error tolerance, in this case a constant).
The constants must satisfy

L1 + σ <
r1
a
, L2 − σ >

r1
a
.

3. Choose the internal feedback operatorv (x), e.g. see
Figure 1,

v(x) = L1+(L2−L1)max
{

0,min
{

1,
x−M + δ

2 δ

}}
.

4. The “induced error vector” is defined as:

s := y − v (x) .

5. The induced error toleranceσ (x, t) is chosen such that:

‖s‖ ≤ σ (x, t) .
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Figure 1:Induced internal feedback operator.

6. Check the conditions∣∣∣∣dydx
∣∣∣∣ >

∣∣∣∣dvdx
∣∣∣∣ ,

to guarantee the invariance of regionG := {z : ‖s‖ ≤
σ}.

7. Analyze the behavior of the system in the following re-
gions:

|x−M | > δ, |x−M | < δ.

From the analysis, we obtain the gainF .

8. The control law is:

u = F x y max
{

0,min
{

1,
s− σ

2σ

}}
.

In this case the following restriction (see Emel’yanov et al.
(1998) for details) must be satisfied:

xeq − σ > sup
r2
b
.

For comparison, we use the parameters in Costa et al. (2000),
substituting the values of these parameters in the constraints,
the following numerical relations are obtained:

xeq > 1.2, F > b+
L2 − L1

2 δ
a = 1.625.

Under these constraints, feasible values of desired equilib-
rium point as well as of the control effort are chosen

xeq = 1.25, yeq = 1, L1 = 0.75, L2 = 1.25,
F = 1.625, M = 1.25, δ = σ = 0.2.

The chosen value ofxeq is the same used in Costa et al.
(2000). The control is given by:

u = F x y max
{

0,min
{

1,
s− σ

2σ

}}
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Figure 2: (a) Phase plane of Lotka–Volterra model subject to
Emel’yanov’s control. (b) Time evolution of the control actionu. Para-
meter valuesr1 = 1, r2 = 1, a = 1, b = 1, F = 1.625, δ = 0.2 and
σ = 0.2.

3.2 Proposed Control design

The idea of backstepping will be explained in a simple form
for equations (7), (8). The state variabley is taken as afic-
titious input (fictitious control), denoted asu1, to the prey
subsystem (7). A control Liapunov function (CLF) is used to
design the controlu1 such that the prey subsystem stabilizes
in the desired equilibrium (for the prey). The next step is to
design the (real control) u2, involving removal of predators,
such that the state of predator subsystemy tracks the design
input u1. Again, the design is made using another CLF. In
accordance with the observation that the control has to be
maintained as simple as possible, both CLF’s are chosen as
quadratic functions.
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The resulting control system is described by:

ẋ = f1(x) + f2(x) y (7)

ẏ = f3(x) y − y u2 (8)

in whichu2 is the control (=threshold policy) to be designed.
In other words, choose:

u2 = ε2 φ(τ, σ), (9)

with ε2 a control effort parameter to be designed andφ(τ, σ)
defined as,

φ (τ, σ) =
{

1 if τ > 0
0 if τ < 0, (10)

whereτ is a variable that defines the threshold, which is de-
pendent on the system states.

The design of the CLF proceeds as follows: In the first sub-
system (7), lety = u1 be a fictitious control. Choose a CLF
as

V1(x) =
1
2
(x− xd)2 (11)

wherexd is the desired equilibrium for the first subsystem.
Note that a coordinate change can be made such that the de-
sired valuexd occurs at the origin.

Calculating the derivative ofV1 along the trajectories of (7)
gives:

V̇1 = (x− xd) (f1(x) + f2(x)u1). (12)

Now, assume for simplicity thatu1 is proportional to the prey
densityx, i.e.,

u1 = ε x. (13)

Then the parameterε must be chosen such thatV̇1 < 0.

Now, u2 must be chosen such thatu1 satisfies (13). There-
fore, choose the thresholdτ as follows

τ = y − u1 = y − ε x, (14)

and a CLFV2 as

V2 =
1
2
τ2, (15)

with the objective of maintainingτ = 0 and thus satisfying
(13).

The derivativeV2 along the trajectories of (7), (8) leads to

V̇2 = τ [−ε 1]
[
f1(x) + f2(x) y
f3(x) y − y u2

]
. (16)

Now the specific properties of functionsf1, f2 andf3 are
used to chooseε andε2 such that both functions satisfẏV1 <
0 andV̇2 < 0, proving stability. The details of the choice and
stability proofs can be found in Meza (2004) and have not
been included in this paper for lack of space.

Simulation of the behavior of the Lotka–
Volterra model subject to the horizontal
threshold policy applied only to the preda-
tor

The Lotka–Volterra subject to the threshold policy applied
only to the predator stabilizes the system around the thresh-
old as shown in the phase plane in Figure 3.a. Time evolution
of the control is shown in Figure 3.b. The sliding equilib-
rium is (xeq

sl , y
eq
sl ) = (1.25, 1). In this caseτ is chosen as

τ = y − yeq
sl .
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Figure 3: (a) Phase plane of the Lotka–Volterra model subject to the
threshold policy. (b) Time evolution of the controlling action. Parameter
valuesr1 = 1, r2 = 1, a = 1, b = 1 eε2 = 0.5

3.3 Design of the controller according to
Fradkov et al.

Consider the Lotka–Volterra model as in (3), in which it is
supposed that the birth rate of predator can be controlled.
Fradkov e Pogromsky (1998) designed the control of the
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birth rate of the prey. In this case model (3) is modified as
follows: {

ẋ = r1 x− a x y
ẏ = −r2 y + b x y + y u

(17)

whereu is the controlling action.

It is not difficult to show that the uncontrolled system (u ≡ 0)
has an infinite number of periodic solutions, provided that
x(0) > 0, y(0) > 0, which correspond to the existence of
the following first integral:

W (x, y) =
(
b x− r2 − r2 log

(
b x

r2

))

+
(
a y − r1 − r1 log

(
a y

r1

))
. (18)

Indeed,
Ẇ (x, y) = 0

along any solution of (3) (x(0) > 0, y(0) > 0), which means
that the quantityW preserves its constant value. The first
integral (18) can be interpreted as a “total energy” of the
“predator-prey” system and the control goal can be stated in
terms of achieving the desired level of quantityW

W (x(t), y(t)) →W∗ as t→ ∞. (19)

whereW∗ is the desired level of the first intergral.

A control goal of this kind can be achieved by the speed
gradient (SG) method, see Fradkov e Pogromsky (1998,
Chap. 2). Introduce the following objective functionQ :
R × R → R+:

Q(x, y) =
1
2

(W (x, y) −W∗)
2
.

Then its time derivative with respect to the system (17) gives

Q̇(x, y) = (W (x, y) −W∗) (a y u− r2 u).

Calculating the gradient inu gives:

∂Q̇

∂u
(x, y) = (W (x, y) −W∗) (a y − r2).

According to Theorem 2.21 in Fradkov e Pogromsky (1998,
pag. 101) the following SG algorithm

u(t) = −γ (W (x(t), y(t)) −W∗) (a y(t) − r2) (20)

achieves the goal (19) forγ > 0 and almost all initial condi-
tions satisfyingx(t) > 0, y(t) > 0.

To illustrate the theoretical results we carried out computer
simulation of the model (17). The SG algorithm (20) for
the system (17) with the following parameter valuesr1 = 1,
r2 = 1, a = 1, b = 1 is as follows

W (x, y) = (x− 1 − log(x)) + (y − 1 − log(y))

andu(t) is

u(t) = −γ (W (x(t), y(t)) −W∗) (y(t) − 1).

Simulation of the behavior of the Lotka–
Volterra model subject to the control ac-
cording to Fradkov et al.
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Figure 4: (a) Phase plane of the Lotka–Volterra model subject to a SG
algorithm. (b) Time evolution of the controlling actionu. Parameter values
r1 = 1, r2 = 1, a = 1, b = 1, γ = 2 andW∗ = −0.1.

It is seen that choosing different values of the desired “en-
ergy” levelW∗ we can achieve significantly different behav-
ior of the controlled system, as shown in Figures 4 and 5
(Fradkov e Pogromsky, 1998). In the case whereW∗ =
−0.1, the system approaches asymptotically to the equilib-
rium point (r1/a , r2/b) as can be observed in Figure 4 and
in the case whereW∗ = 0.5 the system displays a limit cycle
as can be observed in Figure 5.

3.4 Control of systems in the presence of
uncertain inputs

Consider the Lotka–Volterra model under the effect of a har-
vesting strategy with constant efforts in both species,h1 x
andh2 y, and perturbations denoted ass1(t) ands2(t) are
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Figure 5: (a) Phase plane of the Lotka–Volterra model subject to a SG
algorithm. (b) Time evolution of the controlling actionu. Parameter values
r1 = 1, r2 = 1, a = 1, b = 1, γ = 2 andW∗ = 0.5.

added, as well as additional controlsp1 andp2, as follows:

ẋ = r1 x− a x y − x s1 + p1 − h1 x,
ẏ = −r2 y + b x y − y s2 + p2 − h2 y.

(21)

The uncertainty is such that|s1| ≤ sm1 and|s2| ≤ sm2 . The
corresponding equilibrium point is(x∗, y∗). The problem is
to maintain this equilibrium point under the uncertaintiess1
ands2 using the controlsp1 andp2.

According to the method in Vincent et al. (1985), the idea
is to use knowledge of the reachable setR to calculate the
extreme effects of the uncertainty over this set and then use
this information in feedback controller design.

A Liapunov function for (21) withs1 = s2 = p1 = p2 = 0,
also based on the first integral, is given as follows

V (x, y) = x−x∗−x∗ ln
( x

x∗
)
+y−y∗−y∗ ln

(
y

y∗

)
(22)

which is valid throughout the regionX defined by

X =
{
x ∈ R

2 |x > 0, y > 0
}
. (23)

The regionR depends on the specific parameters used and
the equilibrium points of (21) withp1 = p2 = 0, s1 = ±sm1 ,
s2 = ±sm2 andsm1 = 0.2, sm2 = 0.15, h1 = 0.25, h2 =
0.25. Therefore,x∗ = 1.25, y∗ = 0.75, ρ1 = 1.45 × 0.2,
ρ2 = 0.95 × 0.15 and d = 0.25, we obtainsm1 = 0.2,
sm2 = 0.15, h1 = 0.25, h2 = 0.25. Therefore,x∗ = 1.25,
y∗ = 0.75, ρ1 = 1.45×0.2, ρ2 = 0.95×0.15 andd = 0.25,
we obtain

∂V

∂x
= 1 − x∗

x
� e1

∂V

∂y
= 1 − y∗

y
� e2




(24)

Let ω =
√

(x− x∗)2 + (y − y∗)2, then the control laws be-
come

p1 =




−ρ1 sign(e1) if |e1| > ζ
−ρ1 e1/ζ if |e1| ≤ ζ
−ρ1 exp[−l1(ω − d)] sign(e1) if ω > d

(25)

p2 =




−ρ2 sign(e2) if |e2| > ζ
−ρ2 e2/ζ if |e2| ≤ ζ
−ρ2 exp[−l2(ω − d)] sign(e2) if ω > d

(26)

Simulation of the behavior of the Lotka–
Volterra model subject to the control ac-
cording to Vincent et al.

Consider the following parameter values:r1 = r2 = a =
b = 1, x∗ = 1.25, y∗ = 0.75, ζ = 0.01, l1 = 1, l2 = 1,
s1(t) = 0.2 cos(t), s2(t) = 0.15 cos(t).

Figure 6.a shows the simulation of model (21) under pertur-
bations of types1(t) = −0.20 cos(t), s2(t) = −0.15 cos(t)
and subject to the control of type (25), (26). Figure 6.b shows
the time evolution of the control action.

3.5 Static sliding-mode control

Consider a nonlinear unstable plant

ż = a(z) + B(z) ξ, z(0) �= 0. (27)

The goal is to define a controlξ such thatz(t) → 0 for t →
∞. This is achieved by defining a suitable switching surface

σ = r(z) − D(z) sign(σ) (28)

wherer(z), D(z) must be chosen. The following theorem
yields sufficient conditions for the existence of such a static-
mode stabilizing control.
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Figure 6:(a) Phase plane of the Lotka–Volterra model subject to the con-
trol according to Vincent. (b) Time evolution of the controlling actionsu1,
u2.

Junger e Steil (2003) show how the static sliding-mode ap-
proach can be effectively applied for nonlinear plant control.
They show that the functionsr(z) andD(z), which were as-
sumed to be given previously, can effectively be constructed
for an interesting and large class of nonlinear systems. They
defined the sliding-mode control as follows.

Definition 3.1 (Sliding-Mode Control. Definition VI.1 in
Junger e Steil (2003)): Ifξ(t) guaranteesσ(t) ≡ 0, ∀t ∈
[t1, t2], then it is called sliding-mode control.

Theorem 2 (Theorem VI.1 in Junger e Steil (2003)) Let
v(z) be an r-dimensional continuous vector-function such
that z(t) → 0, whenever v(z) → 0. Assume that
det [Jv(z)B(z)] �= 0 for all z �= 0, where Jv(z) is the Ja-
cobian matrix of v(z), then there exists a stabilizing static
sliding-mode control.

Constructive procedure for control design
(and proof of Theorem 2)

With regard to the plant (27) the derivative ofv(z) is

v̇ = Jv(z) [a(z) + B(z) ξ] . (29)

Define the system of differential equations

v̇ = −Kv (30)

whereK = diag{ki} > 0 is an arbitraryr × r constant
positive diagonal matrix.

Substitution from (29) yields

Jv(z) (a(z) + B(z) ξ) = −Kv(z). (31)

The sliding surface is defined by following relation:

σ = Jv(z) (a(z) + B(z) ξ) + Kv(z). (32)

Then, r(z, t) = Jv(z)a(z) + Kv(z), D(z, t) =
−Jv(z)B(z) andσ ≡ 0 by construction. Now, the system is
in sliding mode whenever the static sliding-mode control

ξ = − (Jv(z)B(z))−1 (Jv(z)a(z) + Kv(z)) (33)

is applied. Under (33), equality (30) holds. Therefore,
v(z) → 0 and, hencez(t) → 0.

Junger et al. procedure applied to the
Lotka–Volterra model

Consider a nonlinear system of type Lotka–Volterra that we
desire to stabilize with the help of the static sliding-mode
approach. Assume that the plant (27) has the following para-
meters:

a(z) =
(
r1 x− a x y
−r2 y + b x y

)
,B(z) =

(−x
−y

)
. (34)

Remark 3.1 Note that the static sliding-mode control is ap-
plied to both species.

Chose the functionv(z) as[x− xth y− yth]. The Jacobian
Jv(z)B(z) = [−x − y] is nonzero for allz �= 0.

The corresponding stabilizing static sliding mode continuous
control has the form

ξ =
r1 x− a x y − r2 y + b x y + k (x− xth) + k (y − yth)

x+ y
.

(35)
The Lotka–Volterra system under the static sliding mode
control is as follows{

ẋ = r1 x− a x y − x ξ,
ẏ = −r2 y + b x y − y ξ.

(36)
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Simulation of the behavior of the Lotka–
Volterra model subject to the control ac-
cording to Junger et al.

Figure 7 shows the dynamics of the Lotka–Volterra system
subject to the static sliding mode control.
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Figure 7:(a) Phase plane of the Lotka–Volterra model subject to the sta-
tic sliding mode continuous control. (b) Time evolution of the controlling
actions. Parameter valuesr1 = 1, r2 = 1, a = 1, b = 1, k = 1.25,
xth = 1.25 andyth = 0.75.

3.6 Immersion and Invariance for Stabi-
lization of Nonlinear Systems

Consider the Lotka–Volterra system with a control of type
Immersion and Invariance (I & I) applied only to the predator
as follows

{
ẋ = r1 x− a x y
ẏ = −r2 y + b x y + u2

(37)

with z = [x y]T , u2 ∈ R, n = 2, p = m = 1 and the
following mappings are defined:

α(·) : R → R π(·) : R → R
2 c(·) : R → R

φ(·) : R
2 → R ψ(·, ·) : R

2×1 → R

such that the following hold.

H1) (Target system) Choose the system

ξ̇ = −ξ + xth (38)

with ξ ∈ R and such that it has a globally asymptoti-
cally stable equilibrium atξ∗ = xth and

x∗ = π1(ξ∗) = xth

y∗ = π2(ξ∗)

then
x = π1(ξ) = 2 ξ − xth

from the first equation of (37) we obtain

2(−ξ + xth) = r1 (2 ξ − xth) − a (2 ξ − xth)π2

then

π2 =
r1 (2 ξ − xth) + 2 ξ − 2xth

a (2 ξ − xth)
.

H2) (Immersion condition) The functionc(ξ) is defined im-
plicitly as:

−r2 π2 + b (2 ξ − xth)π2 + c(ξ) =
∂π2

∂ξ
(2 ξ − xth).

H3) (Implicit manifold) The manifoldz = π(ξ) can be de-
scribed by

φ(x, y) = y − r1 x+ x− xth

a x

H4) (Manifold attractivity and trajectory boundedness) The
dynamics on the manifold is calculated as

v̇ =
∂φ

∂z
[f(z) + g(z)ψ(z, v)]

then

v̇ =
(
− xth

a x2
1
) (

r1 x− a x y
−r2 y + b x y + ψ(z, v)

)

v̇ = − xth

a x2
(r1 x− a x y) − r2 y + b x y + ψ(z, v).

The design I & I is completed by choosing

ψ(z, v) =
xth

a x2
(r1 x− a x y) + r2 y − b x y − v,
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which produces the closed loop dynamics


ẋ = r1 x− a x y

ẏ =
xth

a x2
(r1 x− a x y) − v

v̇ = −v.
(39)

Hence, to complete the design it only remains to show
that all trajectories of (39) are bounded. Consider the
coordinate transformation

η = y − r1 x+ x− xth

a x

yielding 


ẋ = −(a η + 1)x+ xth

η̇ = −v
v̇ = −v.

(40)

Note thatx(t), η(t) andv(t) are bounded for allt and
the control law is obtained as

u2 = ψ(z, v) − η =
xth

a x2
(r1 x− a x y) + r2 y

−b x y − y +
r1 x+ x− xth

a x
.

Simulation of the behavior of the Lotka–
Volterra model subject to the control ac-
cording to Astolfi et al.

Figure 8 show the dynamics of the Lotka–Volterra system
under the control law I & I.

4 COMPARISON OF THE DIFFERENT
CONTROL TECHNIQUES

We use the terminology established in section 2 to make a
comparison of the different techniques in a tabular form:

Table 1 shows that only the proposed control possesses all
the desirable charateristics specified in Section 2. To be com-
pletely fair, it should be pointed out that we have not explic-
itly compared control with respect to robustness, although
it is well known (Utkin, 1992) that all variable structure de-
signs, such as the one proposed in this paper, have an inherent
robustness to bounded uncertainty. On the other hand, given
the considerably greater difficulty, or even impossibility, in
the implementation of the other controls, it seems reasonable
to limit our comparison to the items in the columns of Table
1.

5 CONCLUDING REMARKS

The proposed control possess all the desirable characteristics
of a control to be applied in an ecological context, i.e. (i)
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Figure 8:(a) Phase plane of the Lotka–Volterra model subject to the con-
trol I & I. (b) Time evolution of the controlling action. Parameter values
r1 = 1, r2 = 1, a = 1, b = 1, k = 1 andxth = 2.

easy to implement, i.e., it is a proportional control; (ii) the
control is carried through the removal of only one species;
(iii) only one species needs to be monitored; and (iv) species
coexistence is achieved. Moreover, in comparison with sev-
eral existing methods, both old and new, it seems to be the
only one that combines all these desirable characteristics.

In terms of future work along the lines initiated in this paper,
we mention a few topics.

In the real world, the growth rate of a particular species is
usually not a function of the current population density, but
rather that of a density at some point in the recent past. In
other words, there is a delay in the functional response. It is
also well known (May, 1973; Kuang, 1993) that the inclusion
of delays in the system model can have unexpected effects,
often, but not always, destabilizing. It is thus necessary to
carry out a detailed and rigorous study of system behavior
when delays are present, either in the state or in the control.
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Table 1: Comparison of control techniques for the Lotka–Volterra system

Characteristics

Control
Implementation Nonnegative Monitoring

Emel’yanov

Fradkov

Vincent

Junger

I & I

Proposed

Difficult

Difficult

Difficult

Difficult

Difficult

Easy

Yes

Yes

Yes

No

No

No

2 species

2 species

2 species

2 species

2 species

1 species

Some pointers to technical results that may be useful in this
context are Tarbouriech et al. (2000), Mazenc e Niculescu
(2001), Dercole et al. (2003).

Models of virus dynamics (Nowak e May, 2000) are very
similar to the predator-prey models studied in this paper.
There is great current interest in systematically finding “pro-
tocols"(controls) that are capable of stabilizing virus popula-
tions at low levels (Wein et al., 1997) and, once again, desir-
able methods must have most of the characteristics stipulated
in Section 2. We expect that the control design proposed in
this paper will be applicable to this class of problems as well.

Finally, there has been recent interest in applying bifurca-
tion analysis to planar population dynamics models, and pre-
liminary work of this kind can be found in Kuznetsov et al.
(2003), Cunha et al. (2003), Moreno et al. (2003).
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