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ABSTRACT liar e comparar estas técnicas em um contexto ecolégico.

A large class of predator-prey models can be written as a nORALAVRAS-CHAVE : Controle adaptativo de oscilagdes,
linear dynamical system in one or two variables (speciesfontrole a modo deslizante estatico, Entradas incertas, Fun-
In many contexts, it is necessary to introduce a control intgdo de Liapunov com controle, Imerséo e invariancia, Reali-

these dynamics. In this paper we focus on models of twmentacéo interna induzida.

species, and assume, as is common in mathematical ecology,

that the control corresponds to a proportional removal of th¢  |NTRODUCTION

predator population. Six controller design techniques are ap-

plied to the Lotka—\Volterra model, which is thus used as physical, chemical and biological systems are inherently

benchmark to evaluate and compare these techniques infhlinear (May, 1973; Slotine e Li, 1991; Khalil, 1992;

ecological context. Utkin, 1992). A large class of models that describe predator-

prey population dynamics can be described as a nonlinear
ynamic system. In this paper models of two species are
onsidered and they have the following generic form

KEYWORDS: Adaptive control of oscillations, Control Lia-
punov function, Immersion and Invariance, Induced intern
feedback, Static sliding-mode control, Uncertain inputs.

RESUMO fi(@) + fa(x)y )

. fs(z)y 2
Uma ampla classe de modelos do tipo predador-presa pode
ser escrita como um sistema dindmico n&o linear em uma
ou duas variaveis (espécies). Em diversos contextos € Rghere the state variabledenotes the prey density, the state
cessario introduzir um controle nessas dinamicas. Este gariabley denotes the predator density, the functignsnd
tigo foca-se em modelos de duas variaveis. Assume-se, fiedescribe the growth functions of the prey and predator

acordo com a praxe em ecologia matematica, que o contrekgspectively and', is a predator consumption function.
corresponde a remocgédo de uma propor¢éo da populacédo dos

predadores (controle proporcional). Seis técnicas de proje@#ie of the simplest models of predator-prey interaction was

de controladores sdo aplicados ao modelo Lotka—\Volterraf@mulated in the 1920s by A. J. Lotka and V. Volterra and

gual é utilizado como um padrdo obehchmark” para ava- is thus known as the Lotka—\olterra model. It has been ex-
tensively studied because it is a paradigm for more realistic

124 Revista Controle & Automagé&o/Vol.16 no.2/Abril, Maio e Junho 2005



models, and has the following form e Implementation simplicity: (i) the mathematical ex-
pression of the control must be as simple as possible,

{ 33 = mr—ary, ) (i) the control must not depend on the system parame-
y = -rey+bry, ters so that they do not need to be estimated.

where the parameter is the growth rate of the prey; is » Nonnegative control. This corresponds to the propor-
the mortality rate of the predatar, b represent the interac- tional removal of one of the species. In other words, it
tion coefficients between the species; all parameters are pos- is assumed that the control corresponds only to removal,
itives, fi = m x, fo = —ax, f3 = —ry + bx. These equa- i.e. we consider “harvesting” of a certain species.

tions constitute the simplest representation of the essence of

th i dat int i Mav. 1973 G e Minimal monitoring. Refers to the number of popula-
o Eigggtmf;ég‘;re ator-prey interaction (May, » GUMEY tion densities that need to be monitored to implement a

certain control. In the context of the two species model
(4), (5) if only one density is used to design feedback,
we refer to this as output feedback; if both densities are
used, then we call this state feedback.

There have been many attempts to consider changing the
Lotka—Volterra dynamics (3) by the introduction of controls
and the main objective of this paper is to briefly present both
techniques that have already been used, as well as some tha} promotion of coexistence. Both species must reach
have not and compare them with a new technique proposed = systainable equilibrium levels, in which the populations,
in this paper. in appropriate units, are both positive.

We will briefly discuss the other techniques in section 3. ) _

Here we limit ourselves to a brief description of the proposefiinally. as far as units are concerned, note the following:

control.

Density unit: The population density is the size of the pop-
ulation in relation to some space unit. Generally it is
evaluated as the number of individuals or a population
biomass, per unit area or volume.

Population dynamic models with threshold
control

The paper focuses on the introduction of an exogenous coNime unit: Time in ecological systems is usually measured
trol in models of populational dynamics of two species. The  in days, weeks or years.
general model is as follows:

3 GENERAL APPROACHES FOR CON-

t =A@+ L@, “) TROL OF NONLINEAR DYNAMIC SYS-

where the controli; corresponds to a proportional removal thi i brief] t six diff t techni f
of the predator population. We note that the dynamical syér—' IS section we briefly present Six difierent techniques o

tem (4), (5) isin the so called regular form (Utkin, 1992), als(glonlinear system design applied to the Lotkg—VoIterra (3) as
called triangular or chained form. We can chogse: § to a benchmark, with the objective of comparing them to the

control the subsystem (4) so thatas some desired behav_proposed control.

ior, and then design; so thaty in (5) tracksg which is the e et of general design methods of controllers for nonlin-

desired “input” for (4). However, in an ecological contextgar systems can be divided in two subsets in the ecological
the controlling actionuy must satisfy certain restrictions or context, as follows:

desirable characteristics that are discussed in the following

section. Techniques already applied to population dynam-
ics:
2 DESIRABLE CHARACTERISTICS OF
CONTROL IN AN ECOLOGICAL CON- e Several papers on the control of nonlinear ecological
TEXT system models under perturbations have been devoted

to the study of vulnerability and non-vulnerability of
Throughout this paper, the control term is to be understood ~€coSystems subjected to continual, unpredictable, but
as removal of a certain species. bounded disturbances due to changes in climatic con-

ditions, diseases, migrating species, etc. (Beddington
In this context, the control must have the following charac- e May, 1977; Lee e Leitmann, 1983; Steele e Hender-
teristics: son, 1984; Vincent et al., 1985).
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Techniques not previously applied to population
dynamics:

e Fradkov e Pogromsky (1998) applied the so calledhere

speed gradient method of adaptive control of oscil-
lations to control the populations of two competitive
species.
Volterra model of population dynamics.

Their method was specific to the Lotka!

G:={z:|s|| <o(x,t)}

s =y —vla,b),

Emel’yanov et al. (1998) presented a general methodf closed loop, v(z, ¢) isthe trajectory to be tracked, o (z,?)

ology, referred to as induced internal feedback, for thEs @ tracking error tolerance. The control has the following
control of uncertain nonlinear dynamic systems. It igorm:

based on on-off control as well as continuous versions
of the latter and applied to the Lotka—\olterra system.

The proposed control is based on the application of co
trol Liapunov functions (Sontag, 1989), exploring the
structure of the predator-prey systems and the backst

u= —”—zH\IJ(HsH,U)F(z,t).

'Emel’'yanov et al. procedure applied to the
Engtka—VoIterra model with control only in

ping idea (Sepulchre et al., 1997) for the regular fornthe predator

(Utkin, 1992), as well as using the concept of real and
virtual equilibria (Costa et al.,
or variable structure control.

e Junger e Steil (2003) presented a new type of sliding 1

motion which results from a special choice of the sliding
surfaces. They define sliding surfaces such that these
become explicitly dependent on the outputs of the dis-
continuous block. Under this design, a special sliding
mode characterizes the system dynamics, which they
named static sliding mode, because it occurs along the
static contour of the closed-loop systems.

e A new method to design asymptotically stabilizing and

adaptive control laws for nonlinear systems is presented
in Astolfi e Ortega (2003). The method relies upon the

notions of system immersion and manifold invariance

and, in principle, does not require the knowledge of a
(control) Lyapunov function.

3.1 Design of the controller according to
Emel'yanov et al. 3

The following theorem from Emel’yanov et al. (1998) is pre-
sented.

Theorem 1 Consider the system

y = pa(z,y) + B(t)u

z=[z y]T, B = diag(by,...,bn), bi(*) € [£, L], ¢1, 02
are continuous, Lipschitz locally and unknown.

There is a continuous control u such that the trajectories of
the system (6) approach the set G and enter initin finitetime,
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2000) to derive an on-offconsider system (3) with control applied only to the preda-
tor:

T=rx—axy,
y=-roy+bry—u.

Procedure:

Choose the equilibrium point, at which is desired to sta-
bilize the system, for a prey density . It must satisfy

M > sup (%2) ,

and the predator density must satisfy

T1

€eq — -
Yy = .
a

2. Suppose that it is necessary to maintaiclose toM,

i.e.,|x — M| < 4. Introduce the constanfs, L, ando
(o as aninduced error tolerance, in this case a constant).
The constants must satisfy

T1

1
Li+o<—, Ly—0>—.
a a

. Choose the internal feedback operatdr), e.g. see

Figure 1,

v(z) = L1+(Le—L;) max {(Lmin {1, m_é\é—’_é}} .

. The “induced error vector” is defined as:

s:=y—v(z).

. The induced error toleranegz, t) is chosen such that:

sl < o (,1).



Y A ‘ ‘ Ph‘ase port‘rait

sy

Figure 1:induced internal feedback operator. o o5 i is E 2 g s

6. Check the conditions
dy
dx

Control

@
dx

— Predator control u

3

to guarantee the invariance of regioh:= {z : ||s| <

O'}' 12

7. Analyze the behavior of the system in the following re-
gions:
| — M| >34, |z—M|<§é.

From the analysis, we obtain the gdin k

8. The control law is: % s 10 S m = ©
Time

quymax{O,min{l,s_a}}. (b)
20

Figure 2: (a) Phase plane of Lotka—\Volterra model subject to
Emel'yanov’s control. (b) Time evolution of the control actian Para-
In this case the following restriction (see Emel’'yanov et almeter values; = 1,7, = 1,a =1,b= 1, F = 1.625, 5 = 0.2 and

(1998) for details) must be satisfied: o=02.

% — o > sup 2
b
For comparison, we use the parameters in Costa et al. (2000),
substituting the values of these parameters in the constraints,
the following numerical relations are obtained:

Ly—L i
1519 Fsby 2100605 3.2 Proposed Control design

24
. . . ..The idea of backstepping will be explained in a simple form
Under these constraints, feasible values of desired equili St equations (7), (8). The state variahlés taken as dic-

fium point as well as of the control effort are chosen titious input (fictitious control), denoted a4, to the prey
2 = 125, y“=1, L; =075 Ly=125 subsystem (7). A control Liapunov function (CLF) is used to
B 7 _ 7 o 7 7 design the control; such that the prey subsystem stabilizes
F o= 162, M=120=0=02 in the desired equilibrium (for the prey). The next step is to
The chosen value af*? is the same used in Costa et al.design theieal control) us, involving removal of predators,

(2000). The control is given by: such that the state of predator subsystetracks the design
input ;. Again, the design is made using another CLF. In
w = Faymax {0 min {1 5§ — 0}} acc_ord_ance with the observat_ion that the control has to be
’ T 20 maintained as simple as possible, both CLF’s are chosen as

quadratic functions.
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The resulting control system is described by: Simulation of the behavior of the Lotka—
. Volterra model subject to the horizontal
i = filz)+ f2(x)y (7)

_ threshold policy applied only to the preda-
in whichws is the control (=threshold policy) to be designed.
42 . ( policy) g The Lotka—Volterra subject to the threshold policy applied
In other words, choose: o
only to the predator stabilizes the system around the thresh-
Uy = €9 (7, 0), (9) oldasshown inthe phase plane in Figure 3.a. Time evolution
of the control is shown in Figure 3.b. The sliding equilib-

with e5 a control effort parameter to be designed &g, o)  rium is (2%, y57) = (1.25,1). In this caser is chosen as
defined as, T=y—yl )

1 if >0
¢(r,0) = { 0 if 77_-< 0, (10) | | Phase portrait

45F

wherer is a variable that defines the threshold, which is de- af
pendent on the system states. asf

The design of the CLF proceeds as follows: In the first sub-

system (7), leyy = u; be a fictitious control. Choose a CLF Vi
as 1 21

Vi(z) = 5(3@ —x4)? (112) Ls]
wherez, is the desired equilibrium for the first subsystem. ! Kg—/
Note that a coordinate change can be made such that the de-  os;
sired valuery occurs at the origin. ol - : - : . : &

X
Calculating the derivative df; along the trajectories of (7) @)
gives: )
Vi = (2 = zq) (fi(z) + fo(2) ur). (12) s ‘ _ comwdl ‘
Now, assume for simplicity that, is proportional to the prey [ Prodaorconeal,
densityz, i.e., 2
uy =€x. (13)

Then the parametermust be chosen such thit < 0.

Now, us must be chosen such that satisfies (13). There-
fore, choose the threshotdas follows

T=Yy—u =y —Ex, (14) sr
and a CLF; as 0
1 [
‘/2 = 5 T2a (15)
with the objective of maintaining = 0 and thus satisfying
(13)_ Figure 3: (a) Phase plane of the Lotka—\Volterra model subject to the

threshold policy. (b) Time evolution of the controlling action. Parameter

The derivativel, along the trajectories of (7), (8) leadsto  aUet =Lz =lLa=1b=1lee =05

Vh=rle 1| AE ROV )

fal@)y =y ua 3.3 Design of the controller according to

Now the specific properties of functions, f, and f; are Fradkov et al.

used to chooseande, such that both functions satisf& <

0 andV; < 0, proving stability. The details of the choice andConsider the Lotka—Volterra model as in (3), in which it is
stability proofs can be found in Meza (2004) and have n&upposed that the birth rate of predator can be controlled.
been included in this paper for lack of space. Fradkov e Pogromsky (1998) designed the control of the
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birth rate of the prey. In this case model (3) is modified aSimulation of the behavior of the Lotka—
follows: , Volterra model subject to the control ac-

r = rmr—ary .
g = —ry+bry+yu (17) cording to Fradkov et al.

whereu is the controlling action. Phase portrait
35 T T

Itis not difficult to show that the uncontrolled system= 0)

has an infinite number of periodic solutions, provided that
2z(0) > 0, y(0) > 0, which correspond to the existence of
the following first integral:

W(x,y) = (bx —r9 — 1y log (3:)) yw
+ (ay —1ry — 11 log (CL‘U)) . (18) i
!

051

251

Indeed, _
W(I”y) = 0 % 05 1 15 2 25 3 35
along any solution of (3x{(0) > 0, y(0) > 0), which means X
that the quantityi/’ preserves its constant value. The first (a)
integral (18) can be interpreted as a “total energy” of the Control
“predator-prey” system and the control goal can be stated in ‘ ‘ ‘
terms of achieving the desired level of quantity
W(z(t),y(t)) - W, as t— occ. (19)
whereWV, is the desired level of the first intergral.
A control goal of this kind can be achieved by the speed =7
gradient (SG) method, see Fradkov e Pogromsky (1998, ©
Chap. 2). Introduce the following objective functi@p : L
RxR—Ry: of
1
Qz,y) = 5 (Wlz,y) - W.)?. g : N R
Time
Then its time derivative with respect to the system (17) gives (b)
Qz,y) = W(r,y) = W) (ayu —rau). Figure 4: (a) Phase plane of the Lotka-Volterra model subject to a SG
Calculating the gradient in giVES‘ algorithm. (b) Time evolution of the controlling actien Parameter values
i ' rm=1lrg=1a=1b=1+y=2andW. = —0.1.
oQ

5, (OY) = (W(z,y) = Wi) (ay —12).

According to Theorem 2.21 in Fradkov e Pogromsky (1994t is seen that choosing different values of the desired “en-
pag. 101) the following SG algorithm ergy” level W, we can achieve significantly different behav-

ior of the controlled system, as shown in Figures 4 and 5
u(t) = =y (W(z(t),y(t)) — Wi) (ay(t) —r2)  (20) (Fradkov e Pogromsky, 1998). In the case whefe —
achieves the goal (19) for > 0 and almost all initial condi- —0.1, the system approaches asymptotically to the equilib-
tions satisfyinge(t) > 0, y(t) > 0. rium point(r1/a, r2/b) as can be observed in Figure 4 and
in the case wher®/, = 0.5 the system displays a limit cycle
To illustrate the theoretical results we carried out computers can be observed in Figure 5.
simulation of the model (17). The SG algorithm (20) for
the system (17) with the following parameter values= 1,
ro =1,a=1,b=1Is as follows

W(z,y) = (x — 1 —log(z)) + (y — 1 — log(y))
andu(t) is

3.4 Control of systems in the presence of
uncertain inputs

Consider the Lotka—Volterra model under the effect of a har-
vesting strategy with constant efforts in both speciesy
u(t) = =y (W(z(t),y(t)) — Wi) (y(t) — 1). and h, y, and perturbations denoted agt) and s, (t) are
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35

251

151

0.5

Phase portrait

which is valid throughout the regiok defined by

X={zeR*z>0,

y>0}.

(23)

The regionR depends on the specific parameters used and
the equilibrium points of (21) with, = p2 = 0, 81 = £5m;,
83 = £, aNds,,, = 0.2, 8, = 0.15, by = 0.25, hy =
0.25. Thereforex™ = 1.25, y* = 0.75, p1 = 1.45 x 0.2,
p2 = 0.95 x 0.15 andd = 0.25, we obtains,,, = 0.2,
Smy = 0.15, hy = 0.25, hy = 0.25. Thereforexz™ = 1.25,
y* = 0.75, p1 = 1.45 x 0.2, ps = 0.95 x 0.15 andd = 0.25,

we obtain
; ; ; ; ; | 81 =1 ai 2.
0 05 1 15 « 2 25 3 35 ax - T — €1 ( )
24
(a) ov y*
—_—= ]_ e 62
Control 3y Yy
7 Letw = /(z — 2*)2 + (y — y*)2, then the control laws be-
come
’ —p1sign(e:) it Jer| > ¢
i =9 —prei/C if el <¢
g —p1 exp[—l1(w — d)]signe;) if w>d
. (25)
—p2 sign(ez) if le2| > ¢
5\ p2=1q —p2e2/C if Jea] <¢
of —p2 exp[—la(w — d)] sign(ez) if w>d
(26)
0 5 10 Tllr;e 20 25 30
(b) Simulation of the behavior of the Lotka—

. _ Volterra model subject to the control ac-
Figure 5: (a) Phase plane of the Lotka-Volterra model subject to a SG

algorithm. (b) Time evolution of the controlling actian Parameter values cordlng to Vincent et al.

rm=1ra=1a=1b=1,v=2andW, = 0.5.
Consider the following parameter values: = ro = a =
b=1,2* =125 4" =075 =00110 =1, =1,
s1(t) = 0.2 cos(t), sa(t) = 0.15 cos(t).

added, as well as additional contrglsandp-, as follows:

Figure 6.a shows the simulation of model (21) under pertur-

bations of types; (t) = —0.20 cos(t), s2(t) = —0.15 cos(t)

and subject to the control of type (25), (26). Figure 6.b shows

the time evolution of the control action.
The uncertainty is such that; | < s,,,, and|ss| < s,,,,. The

corresponding equilibrium point i(&*, y*). The problem is
to maintain this equilibrium point under the uncertainties
andss using the controlg; andp,.

r=rmxr—ary—xS+p—hix,

: 21
y=-rey+bry—ysa+p2—hay. (21)

3.5 Static sliding-mode control

Consider a nonlinear unstable plant
According to the method in Vincent et al. (1985), the idea . _ B 0) £ 0 27
is to use knowledge of the reachable &eto calculate the z=a(z)+ B(z)¢, 2z(0)#0. (27)
extreme effects of the uncertainty over this set and then uF#e goal is to define a contrglsuch that(t) — 0 for t —

this information in feedback controller design. oo. This is achieved by defining a suitable switching surface

o =r(z) — D(z)sign(o)

wherer(z), D(z) must be chosen. The following theorem
yields sufficient conditions for the existence of such a static-
mode stabilizing control.

A Liapunov function for (21) withs; = s = p1 = p2 =0,

(28)
also based on the first integral, is given as follows

Viz,y) =x—a*—z"In (%)erfy*fy* In <yy*) (22)
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Phaseportrait Constructive procedure for control design
(and proof of Theorem 2)

With regard to the plant (27) the derivativewfz) is
v =J,(2) [a(z) + B(2)¢]. (29)
Define the system of differential equations
v=-Kv (30)

whereK = diag{k;} > 0 is an arbitraryr x r constant
positive diagonal matrix.

X ‘ | ‘ Substitution from (29) yields
@ J,(2) (a(z) + B(2)€) = —Kv(a). (31)
u conros vy ot o, The sliding surface is defined by following relation:
o =J,(2) (a(z) + B(z) ) + Kv(2). (32)
Then, r(z,t) = J.(z)a(z) + Kv(z), D(z.t) =

—J,(z) B(z) ando = 0 by construction. Now, the system is
in sliding mode whenever the static sliding-mode control

¢=-(J,(2)B() " (J,(2)a(z) + Kv(z)) (33

is applied. Under (33), equality (30) holds. Therefore,
v(z) — 0 and, hence(t) — 0.

uq,uy

-02
0

(b) Junger et al. procedure applied to the
Lotka—Volterra model
Figure 6:(a) Phase plane of the Lotka—Volterra model subject to the con-
trol according to Vincent. (b) Time evolution of the controlling actiens  Consider a nonlinear system of type Lotka—Volterra that we
“2 desire to stabilize with the help of the static sliding-mode
approach. Assume that the plant (27) has the following para-
meters:

Junger e Steil (2003) show how the static sliding-mode ap- a(z) = ( rmr—axry ) B(z) = <—96) . (34)
proach can be effectively applied for nonlinear plant control. —ray+bzy)’ -y
They show that the functiongz) andD(z), which were as- o .
sumed to be given previously, can effectively be constructdgeMa k 3.1 Note that the static sliding-mode control is ap-
for an interesting and large class of nonlinear systems. Th&jjed to both species.
defined the sliding-mode control as follows.
Chose the function (z) as[z — z:n, vy — y:»]. The Jacobian
J,(z)B(z) = [-x —y]is nonzero for alk # 0.
Definition 3.1 (Sliding-Mode Control. Definition VI.1 in
Junger e Steil (2003)): If(¢) guarantees (t) = 0, V¢ € The corresponding stabilizing static sliding mode continuous
[t1, t2], then it is called sliding-mode control. control has the form
‘= mr—azy—roytbry+k(z—zu)+ky—ym)
Theorem 2 (Theorem VI.1 in Junger e Steil (2003)) Let Tty (35)
v(z) be an r-dimensional continuous vector-function such oy o \polterra system under the static sliding mode
that z(t) — 0, whenever v(z) — 0. Assume that control is as follows
det [J,(z) B(z)] # 0 for all z # 0, where J,(z) is the Ja-
cobian matrix of v(z), then there exists a stabilizing static { t=rz—axy—xg (36)
dliding-mode control. y=-—roy+bry—y¢.
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Simulation of the behavior of the Lotka— with 2 = [z y]T, us € R,n = 2, p = m = 1 and the
Volterra model subject to the control ac- following mappings are defined:

cording to Junger et al. o) i RoR ():R—R® cf):R—R
Figure 7 shows the dynamics of the Lotka—\olterra system  ¢(-) : R?* =R a(-,-) : R** - R

subject to the static sliding mode control. )
such that the following hold.

Phase portrait
35 T T

H1) (Target system) Choose the system

3t 7 § = *6 + xyp (38)
with ¢ € R and such that it has a globally asymptoti-

A 1 cally stable equilibrium a§* = z,;, and
y

150 q -r* = T (f*) = Tth

| ] yro= m(E)
osf , 1 then

‘ ‘ ‘ ‘ ‘ ‘ r=m(§) =2z
' " ' Tl N ' . from the first equation of (37) we obtain
(a)

Controls 2(_6 + -Tth) =n (25 - «Tth) —a (25 - xth) 2

‘ ‘ __ Prey control u
12 11 (28 — 2n) + 286 — 234

TTo =
10+ Bl ? a’(2£7"1“th)
o : 1 H2) (Immersion condition) The function(¢) is defined im-
uztig , | plicitly as:
“ ) Oy
w —ramy +b(2€ —ap) M2+ c(§) = 57 (26 — @)

ZL/ b ag

H3) (Implicit manifold) The manifold: = 7 () can be de-
Z s 10 15 20 2 30 SCr'bed by

"X+ T— Tep

b
() P(z,y) =y
Figure 7:(a) Phase plane of the Lotka—\Volterra model subject to the sta-

tic sliding mode continuous control. (b) Time evolution of the controllingH4) (Manifold attractivity and trajectory boundedness) The
actions. Parameter values = 1,720 = 1,a = 1,b = 1, k = 1.25,

axr

2 = 1.25 andy,), = 0.75. dynamics on the manifold is calculated as
0
b= 52 [£(2) + () (2. 0)]

3.6 Immersion and Invariance for Stabi- then

lization of Nonlinear Systems . (_ Ttn 1) T —ary

_ . T\ aa? —roy +bry+Y(z,v)

Consider the Lotka—\Volterra system with a control of type
| i | i 1 &1 li I h . T
ar;\r;z:lalgs\;\clnsn and Invariance (I & I) applied only to the predator b= _TZ; (2 —azy) —r2y+bry+v(z,0).

The design | & | is completed by choosing

rMTr—azxy

g'c Tth
y = —reyt+bry+us

(37) 1/)(2,11):W(rlw—axy)—kmy—bxy—u
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which produces the closed loop dynamics Phase portrait

35

T = rmr—azxy Bl
. Tth
= - - 39
jo= i(ne-ary)-v  (39)
Vo= —u.
Hence, to complete the design it only remains to show y |

that all trajectories of (39) are bounded. Consider the
coordinate transformation

T T+ T — Ty

n=y os|
ax
yielding % ; 3 5 3
X
T = —(an+1)x+ a4 @)
No= - (40)
Vo= —uv. s ‘ ‘ Cor‘1trol
Note thatz(t), n(¢) andv(t) are bounded for alf and |
the control law is obtained as
:I; h 301
us =YP(z,0) —n = Q;Q (mx—azxy)+rey il
mr+r—x 3
—bx y—y + 177”1 20f
ax

Simulation of the behavior of the Lotka—
Volterra model subject to the control ac- S S A I R
cording to Astolfi et al. g : 0 s = = l

Figure 8 show the dynamics of the Lotka—Volterra system (b)

under the control a | & I. Figure 8:(a) Phase plane of the Lotka—\Volterra model subject to the con-

trol I & I. (b) Time evolution of the controlling action. Parameter values
4 COMPARISON OF THE DIFFERENT " =hr2=he=shb=LE=tandw, =2
CONTROL TECHNIQUES

We use the terminology established in section 2 to make a

comparison of the different techniques in a tabular form: casy to_|mpler_nent, l.e., itis a proportional control; (i) t_he.
control is carried through the removal of only one species;

Table 1 shows that only the proposed control possesses @f) Only one species needs to be monitored; and (iv) species
the desirable charateristics specified in Section 2. To be coifRexistence is achieved. Moreover, in comparison with sev-
pletely fair, it should be pointed out that we have not explicéral existing methods, both old and new, it seems to be the
it is well known (Utkin, 1992) that all variable structure de-I(rgntterms of future work along the lines initiated in this paper,

signs, such as the one proposed in this paper, have an inher

robustness to bounded uncertainty. On the other hand, giv\évr? mention a few topics.

the considerably greater difficulty, or even impossibility, i the real world, the growth rate of a particular species is
the implementation of the other controls, it seems reasonatﬂgua”y not a function of the current population density, but
to limit our comparison to the items in the columns of Tablgather that of a density at some point in the recent past. In
L other words, there is a delay in the functional response. It is
also well known (May, 1973; Kuang, 1993) that the inclusion
5 CONCLUDING REMARKS of delays in the system model can have unexpected effects,
often, but not always, destabilizing. It is thus necessary to
The proposed control possess all the desirable characteristiesry out a detailed and rigorous study of system behavior
of a control to be applied in an ecological context, i.e. (iwhen delays are present, either in the state or in the control.
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Table 1: Comparison of control techniques for the Lotka—Volterra system

Characteristics Implementation Nonnegative Monitoring
Control

Emel'yanov Difficult Yes 2 species
Fradkov Difficult No 2 species
Vincent Difficult No 2 species
Junger Difficult No 2 species

1& 1 Difficult Yes 2 species

Proposed Easy Yes 1 species

Some pointers to technical results that may be useful in this  trol 46(4): 590-606.

context are Tarbouriech et al. (2000), Mazenc e Niculescu )
(2001), Dercole et al. (2003). Beddington, J. R. e May, R. M. (1977). Harvesting natural

populations in a randomly fluctuating environmesui-
Models of virus dynamics (Nowak e May, 2000) are very ence 197: 463—-465.

similar to the predator-prey models studied in this paper. .
There is great current interest in systematically finding “pro(-:OSta’ M. IS, Ka;zkurewmz, E., Bhaya, A. e Hsu,”L.
(2000). Achieving global convergence to an equilib-

tocols"(controls) that are capable of stabilizing virus popula- : Lo
tions at low levels (Wein et al., 1997) and, once again, desir-  ''uM population in predator-prey systems by the use of

able methods must have most of the characteristics stipulated discontinuous harvesting policgcological Modelling

in Section 2. We expect that the control design proposed in 128: 89-99.

this paper will be applicable to this class of problems as We'bunha, F. B., Pagano, D. J. e Moreno, U. F. (2003). Slid-
ing bifurcations of equilibria in planar variable struc-
ture systemd EEE Trans. Circuitsand Systems-I: Fun-
damental Theory and Applications 50(8): 1129-1134.

Finally, there has been recent interest in applying bifurca-
tion analysis to planar population dynamics models, and pre-
liminary work of this kind can be found in Kuznetsov et al.

(2003), Cunha et al. (2003), Moreno et al. (2003). Dercole, F., Gragnani, A., Kuznetsov, Y. A. e Rinaldi, S.
(2003). Numerical sliding bifurcation analysis: An ap-
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