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In this note we shall discuss the following problem. Let D be a bounded do-

main in Rn, n ≥ 2, with Lipschitzian boundary d D, and γ be a real bounded

measurable function in D with a positive lower bound. Consider the differential

operator

Lγ (w) = ∇ · (γ∇w)

acting on function of H 1 (D) and the quadratic form Qγ (φ) , where the functions

in H 1 (Rn) , defined by

Qγ (φ) =
∫

D
γ (∇w)2 dx, w ∈ H 1

(
R

n
)
, w|d D = 0

Lγ w = ∇ · (γ∇w) = 0 in D.
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The problem is then to decide whether γ is uniquely determined by Qγ and to

calculate γ in terms Qγ , if γ is indeed determined by Qγ .

This problem originates in the following problem of electrical prospection. If

D represents an inhomogeneous conducting body with electrical conductivity

γ , determine γ by means of direct current steady state electrical measurements

carried out on the surface of D, that is without penetrating D. In this physical sit-

uation Qγ (φ) represents the power necessary to maintain an electrical potential

γ in ∂ D.

In principle Qγ can be determined through measurements effected on d D and

contains all information about γ which can be thus obtained.

But let us return to our mathematical problem. Let us introduce the following

norms in the space of functions γ on d D and in the space of quadratic forms

Q(φ)

‖φ‖2 =
∫

D
|∇u|2 dx ; u|d D = φ , �u = 0 in D.

‖Q‖ = sup
‖φ‖≤1

|Q(φ)|

Then the mapping

� : γ → Qγ

is bounded and analytic in the subset of L∞(D) consisting of functions which

are real and have a positive lower bound. Our goal is then to determine whether

� is injective, and invert � if this is the case. This we are yet unable to do and

is, as far as we know, an open problem. However we shall show that d�|γ=const

is indeed injective, that is, the linearized problem has an affirmative answer. If

d�|γ=const, which is a linear operator, had a closer range, one could conclude

that � itself is injective in a sufficiently small neighborhood of γ = const. But

the range of d� is not closed and the desired conclusion cannot be obtained in

this fashion. Nevertheless, as we shall see below, if γ is sufficiently close to a

constant, it is nearly determined by Qγ and in some cases it can be calculated

with an error much smaller than ‖γ − const‖L∞ .

To show this let us first obtain an expression for the solution of the equation

Lγ (W ) = ∇ · (γ∇W ) , W |d D = φ. γ = 1 + δ
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Let W = u + v, where �u = L1u = 0, u|d D = φ. Then

Lγ (W ) = L1+γ (u + v) = L1v + Lγ v + Lγ u = 0

Since u|d D = W |d D we have v|d D = 0 and v ∈ H 1
0 (D), the closure in H 1(Rn)

of functions of C∞ with support in D. But L1, as an operator from H 1
0 (D) into

H−1(D), has a bounded inverse G, and from the last expression we obtain

v + GLδv = −GLδu.

and

v = −
[ ∞∑

0

(−1) j (GLδ)
j

]
(GLδu) (1)

Since for W ∈ H 1
0 (D), ‖LδW‖H−1(D) ≤ ‖δ‖L∞‖W‖H1

0 (D) if A denotes the

norm of G, the series above will converge for ‖δ‖L∞ A < 1 and

‖v‖H−1(D) ≤ A‖δ‖L∞‖φ‖
1 − A‖δ‖L∞

(2)

From (1) it follows that φ is analytic at γ = 1. The same argument would show

that φ is analytic at any other point γ .

Next let us calculate dφ|γ=1. We have

Q1+δ(φ) =
∫

D
(1 + δ)|∇W |2dx =

∫
D
[(1 + δ)|∇u|2 + 2(∇u · ∇u)

+ 2δ(∇u · ∇v) + (1 + δ)|∇v|2]dx

(3)

The contribution of the second term in the integrand of the last integral vanishes

on account of the fact that �u = 0. Furthermore, from (1) one sees readily that

the parts linear in δ of the last two terms in the integrand vanish. Thus setting

dγ = δ we obtain

d Qγ (φ)|γ=1 =
∫

D
δ|∇u|2dx, �u = 0, u|d D = φ

To show that d Qγ (φ)|γ=1 is injective, we merely have to show that if the last

integral vanishes for all u with �u = 0 then δ = 0. But if the integral vanishes

for all such u, then we also have∫
D

δ(∇u1.∇u2)dx = 0 (4)
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whenever �u1 = �u2 = 0 in D. Now let Z be any vector in Rn and a another

vector such that |a| = |Z |, ( a.Z) = 0. Then the functions

u1(x) = eπ i(Z .x)+π(a.x), u2 = ei(Z .x)−(a.x). (5)

are harmonic, and substituting in (3) we obtain

2π |Z |2
∫

D
δ(x)e2π i(Z .x)dx = 0, ∀Z

whence it follows that δ = 0.

Now let us return to Qγ (W ). We set again γ = 1+δ and introduce the bilinear

form

B(φ1, φ2) = 1

2

[
Qγ (W1 + W2) − Qγ (W1) − Qγ (W2)

]
and setting W j = u j + v j , j = 1, 2, �u j = 0, u j |d D = φ j we obtain

B(φ1, φ2) =
∫

D
(1 + δ)(∇u1.∇u2) + δ

[
(∇u1.∇v2) + (∇u2.∇v1)

]
+ (1 + δ)(∇v1.∇v2)dx

Now, substitution of the exponentials in (5) for u1 and u2 in the preceding

expression (taking a to be a function of Z such that |a| = |Z |, (a.Z) = 0) yields

γ̂ (Z) = F̂(Z) + R(Z) (6)

where γ̂ (Z) is a Fourier transform of γ extended to be zero outside D, the

function

F̂(Z) = 1

2π2|Z |2 B
(
eiπ(Z .x)+π(a.x), eiπ(Z .x)−π(a.x)

)
is known and, as follows readily from (2),

|R(Z)| ≤ C‖δ‖2
L∞e2πr |Z | (7)

provided that A‖δ‖L∞ ≤ 1 − ε, where C depends only on D and ε, and r is the

radius of the smallest sphere containing D. Now R(Z) is too large to permit

estimating γ (x). However, under favorable circumstances it is still possible to

obtain satisfactory information about γ . Choose α, 1 < α < 2, then for

|Z | ≤ 2 − α

2πr
log

1

‖δ‖L∞
= σ (8)
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we have |R(Z)| ≤ C‖δ‖α
L∞ . Let η be a function such that η̂ ∈ C∞, supp η̂ ⊂

{|Z | ≤ 1} η̂(0) = 1, and let ησ = σ nη(σ Z). Then we have

γ̂ (Z)η̂

(
Z

σ

)
= F̂(Z)η̂

(
Z

σ

)
+ R(Z)η̂

(
Z

σ

)

and

(γ ∗ ησ )(x) = (F ∗ ησ )(x) + ρ(x) (9)

where ∗ denotes convolution and

|ρ(Z)| ≤ C‖δ‖α
L∞

∫ ∣∣η̂( Z
σ
)
∣∣ d Z = C1‖δ‖α

L∞

[
log

1

‖δ‖L∞

]n

where C1 depends only on D, α e ε.

Thus if ‖δ‖L∞ is sufficiently small, (9) gives an approximation for γ ∗ ησ with

an error which is much smaller than ‖δ‖L∞ . Clearly, if ‖δ‖L∞ is small then σ is

large and γ ∗ ησ is itself in some sense, a good approximation to γ .

Approximations to the function γ itself may be obtained if one assumes that

γ , extended to be equal to 1 outside D, is in Cm , m > n. In this case one obtains

δ̂ (Z) = F̂1 (Z) + R̂ (Z)

where F1 is known and R (Z) is the same as in (6). One then calculates δ (x) by

integrating over |Z | ≤ σ with σ as in (8) and estimates the error by using the

decay of δ̂ at ∞. Thus one obtains

γ (x) = F2 (x) + σ (x)

where F2 (x) is known and

|ρ (x)| ≤ C ‖δ‖α
L∞

[
log

1

‖δ‖L∞

]n

+ C M

[
log

1

‖δ‖L∞

]m+n

where M is a bound for the derivatives of order m of γ .
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