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INTRODUCTION

Structural masonry is a constructive system that has been 
gaining the construction market in Brazil and the world, as 
it allows for a reduction in the construction period, as well 
as savings in the final cost of the projects [1, 2]. Despite the 
high acceptance in the market and the scientific scenario, 
the lack of some knowledge about the mechanical behavior 
of this type of system inhibits the application of structural 
masonry as a diffuse constructive model. It is worth noting 
that in the last years several studies have been carried out 
regarding the compressive strength of the structural blocks, 
considered the main parameter for the design of this type of 

masonry, lacking studies about the deformation properties 
that these blocks present [3, 4]. As an example of studies in 
structural masonry, we can mention: i) Santiago and Beck 
[5] performed quality control of several concrete structural 
block factories in different regions of Brazil, taking as 
parameters the compressive strength, dimensional analysis, 
and water absorption; ii) Mata et al. [6] verified the flexural 
and shear behavior in structural masonry panels using the 
procedures of standards ABNT NBR 15961-1:2011 [7], 
EN 1996-1-1:2005 [8], and ACI TMS 530:2013 [9], not 
checking the other properties; iii) Fortes et al. [10] studied 
the compressive strength of structural masonry with high 
strength concrete blocks; and iv) Santos et al. [11] carried 
out modeling by the finite element method in structural 
masonry intending to study the compressive strength of 
ceramic prisms.
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Abstract

There are studies analyzing the parameters of structural masonry strength, however few are performed evaluating the interference 
of the mortar in the deformability parameters. The objective of this study was to verify the theories of elasticity (Hooke’s linear 
model and nonlinear models by Ghosh, Duffing, and Martin, Roth, and Stiehler) applied to structural masonry. Ceramic blocks 
were pressed and fired at 890 ºC and mortars prepared with the proportion 1:1:5:0.5:2 of cement: hydrated lime: sand: PVA binder: 
water. The materials were tested in compression individually and in prisms with and without the use of mortars. The results 
obtained with the linear elastic analysis were incoherent since the deformability modulus obtained for the mortar prisms was higher 
than those without mortar. Performing the analysis by nonlinear theories, it was found that the results obtained were more coherent, 
mainly by Duffing’s theory that uses one parameter for stiffness and another for damping of the material.
Keywords: structural blocks, compressive strength, deformability, nonlinear elastic relationship.

Resumo

Existem estudos analisando os parâmetros de resistência de alvenaria estrutural, porém poucos são realizados avaliando a 
interferência da argamassa nos parâmetros de deformabilidade. O objetivo deste estudo foi verificar teorias de elasticidade 
(modelo linear de Hooke e modelos não lineares de Ghosh, de Duffing e de Martin, Roth e Stiehler) aplicados a alvenaria estrutural. 
Foram confeccionados blocos cerâmicos prensados e queimados a 890 ºC e argamassas na proporção 1:1:5:0,5:2 de cimento: 
cal hidratada: areia: cola PVA: água. Os materiais foram ensaiados à compressão individualmente e em prismas com e sem a 
utilização das argamassas. Os resultados obtidos com a análise linear elástica mostraram-se incoerentes uma vez que o módulo 
de deformabilidade obtido para os prismas com argamassa foi maior do que os sem argamassa. Realizando a análise pelas teorias 
não lineares, verificou-se que os resultados obtidos foram mais coerentes, principalmente pela teoria de Duffing, que utiliza um 
parâmetro para rigidez e outro para amortecimento do material.
Palavras-chave: blocos estruturais, resistência à compressão, deformabilidade, relação elástica não linear.
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In the literature on the subject, studies on mortars used in 
structural masonry [12], as well as the influence of grating 
on the compressive strength properties of the material [13], 
are also highlighted. It is interesting also to highlight studies 
that evaluated the incorporation of residues in structural 
masonry, in both ceramic and concrete [14], and other 
studies that evaluated the productive efficiency of the system 
in structural masonry when compared to other methods [15], 
as well as environmental studies, which compare the amount 
of CO2 emitted in the production and transport of the units 
of ceramic and concrete structural blocks comparing them 
with other technological ones [16]. About the use of mortars 
for laying structural masonry, there is also some pertinent 
information that is deepened in the present study. It is known 
that the main function of the mortar in sealing systems is to 
act as a bond of the parts that compose the masonry, making 
it monolithic [17]. Another function of great importance, 
which is investigated more specifically in this study, is the 
capacity to accommodate or receive the loads and to allow 
the deformations to occur without the appearance of internal 
tensions that would provoke the appearance of cracks. 
In this way, it can be considered that the mortar acts as a 
dilatation joint, which relieves the internal stresses of the 
material [18].

From another point of view, it can be considered that 
the mortars function as elastic support (or springs) for the 
blocks that make up a row of structural masonry walls. 
Springs are defined as any device or material, the purpose of 
which is to convert mechanical work into potential energy 
and to reconvert it back into mechanical energy. Some 
springs work exclusively in linear ways, obeying Hooke’s 
law, and nonlinear springs, whose relation between load 
or applied stress is not proportional to the displacements 
or deformations suffered by the material [19, 20]. Some 
nonlinear elastic theories are cited below and are deepened 
during the analysis of the results of this study. Ghosh’s theory 
[19] proposes that the relationship between stress and strain 
is not linear, but quadratic or cubic for more complex spring 
systems. As described, masonry mortars act as springs for 
the system and provide cushioning when loads are applied. 
However, this system is not simple, since it is composed 
of blocks and mortars, so it is expected that more complex 
theories than Hooke’s law are valid for this type of material. 
Another interesting nonlinear theory is from Duffing [19, 
20], which proposes that stresses and deformations are 
proportional, but depend on two distinct factors (stiffness 
and damping capacity), whereas classical theories such 
as Hooke’s law propose that these two properties are 
related only as a function of the modulus of elasticity, 
which measures the stiffness of the evaluated system. It is 
also valid to describe Martin, Roth, and Stiehler’s theory, 
which proposes an adjustment dependent on exponential 
parameters rather than the polynomial parameters presented 
by other authors [19, 20].

It is worth noting that although there are studies that 
perform numerical modeling in structural masonry [2-5], 
or investigate the mechanical and elastic behavior of the 

system as a whole or the main components of the system 
(mortar and block) [12, 13, 17], papers that evaluated the 
validity of the nonlinear elastic theories presented above 
were not found in the literature. This is the main novelty of 
this study, which evaluated the structural masonry system 
by different theories beyond the classical Hooke’s law. In 
this context, the objective of this study is to understand 
the deformability behavior of structural masonry elements 
produced with pressed and fired structural masonry ceramic 
blocks, aiming to understand how mortars influence the 
mechanical behavior of loaded walls. The proposed study 
is important because it allows understanding the behavior 
of deformation of a structural material that exhibits fragile 
behavior. It is known that this type of structure represents 
less security for users of the building, since, in reinforced 
concrete buildings, it is easier to inspect the cracks in the 
material in service. In structural masonry structures, where 
the part of resisting efforts is performed by the wall itself, it 
is more difficult to perform the analysis of cracks, due to the 
fragility that the system presents, causing abrupt failures and 
without prior warnings.

MATERIALS AND METHODS

To make ceramic blocks, a kaolinite clay mass from the 
city of Campos dos Goytacazes-RJ, Brazil, which presented 
the same parameters of physical, chemical, and mineralogical 
characterization, indicated by other researchers who studied 
the same clay [21-23], was used. The ceramic blocks were 
produced using an Eco Master 7000 Turbo II press, with 
hydraulic control, 7.5 hp engine, and compression load 
up to 360 kN. The blocks had dimensions of 30x15x7 cm 
(Fig. 1) and were of the male-female model for fitting, 
which enabled optimization of the constructive process 
[24, 25]. After pressing, the structural ceramic blocks were 
fired at 890 °C in a Caieira-type oven. After the firing 
process, 6 ceramic blocks were tested in compression in an 
instrumented manner to obtain the modulus of elasticity of 
the material, as recommended by ABNT NBR 15270-2:2005 
standard [26]. The blocks were cut and fitted as shown in 
Table I, using LVDT strain gauges (PA-06-1000BA-120L) 
connected to a Lynx data acquisition system. This system 
sent electrical signals to sensors that operated as electrical 
resistors and converted the variations of these resistors 
into deformations. These deformations were captured and 
interpreted by AqDados and AqDanalysis 7.0 software 
installed on the computer connected to the Lynx system. For 
the loading application, a servo-hydraulic press was used, 
with load control, speed control, and data acquisition cell 
for the applied force over time. The press used (Emic) had 
a load capacity of 2000 kN. Thus, it was possible to plot the 
stress-strain curve, from which the modulus of elasticity of 
the material was extracted.

The mortar used was produced in a 1:1:5:0.5:2 mass 
ratio of Portland cement CP III-40 RS: super lime CH III: 
medium sand: PVA binder: water, a composition based on 
literature [27, 28]. To test the material in compression and 
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to obtain the longitudinal deformation modulus, 9 prismatic 
4x4x16 cm samples were used. Next, prisms were produced 
with the studied three-row ceramic blocks, with and without 
the application of the laying mortar. Table I shows the prism 
models used in the study. Four prisms were produced with 
each mortar pattern for compression testing, following 
the same parameters and using the same test equipment 
performed in the single block. Stress-strain curves were 
obtained for the two prism patterns under study, from which 
it was possible to obtain the modulus of elasticity using the 
classical linear theory of Hooke and other nonlinear theories, 
highlighted before and presented more fully ahead. It is 
noteworthy that the regression calculations were performed 
with the aid of Microsoft Excel software.

RESULTS AND DISCUSSION

Analysis of the parameters of the block and individual 
mortar: Fig. 2a shows the stress-strain curve for the 6 blocks 
tested. The compressive strength of the blocks was 4.13±0.32 
MPa, and the longitudinal deformability modulus was 
2.80±0.09 GPa. In addition, the blocks presented a Poisson’s 
ratio of 0.18±0.03, and the transversal elastic modulus 
was 1.18±0.02 GPa. It was observed that the behavior of 
the material was fragile, where the rupture occurred as the 
appearance of previous cracks, and the elastic region was 
nonlinear. These facts can be justified through the crystalline 
structure that the ceramic blocks present. It is known that 
these blocks are formed by ionic bonds, and because of this, 
there are very few slip systems, where the movement of the 

dislocations can occur [29, 30]. This is due to the electrically 
charged nature of the ions that make up this material, which 
causes positions where the same charge ions are placed close 
to each other, causing static repulsion. These facts provoke 
the fracture of the ceramic materials [31, 32], and cause 
the occurrence of nonlinear elastic behavior, as verified 
in Fig. 2a. The behavior presented by the blocks makes 
difficult the analysis of the material, since the use of fragile 
structures is extremely dangerous. Thus, it is understood 
that analyzing only the absolute values of strength, which 
in this case presented an average value of 4.13 MPa, is not 
enough to study the structural blocks. The deformability of 
the blocks, which can be illustrated by parameters such as 
the longitudinal and transverse modulus of elasticity, should 
also be analyzed. These parameters of deformability were 
studied in prisms with two configurations: with a mortar 
and another without mortar. This comparison was carried 
out with the purpose of evaluating the effect that the mortar 
causes in elements of structural masonry. Fig. 2b shows 
the stress-strain curve obtained for the studied mortars. 
The compressive strength of the mortars was 2.82±0.46 
MPa, while the longitudinal deformability modulus for the 
material was 0.88±0.02 GPa.

Analysis of the parameters of prisms with and without 
mortar: Figs. 3a and 3b show the stress-strain curves for the 
prisms produced without and with mortar, respectively. It 
should be noted that the raw materials without mortar had 

Figure 1: Illustration of the plug-in block used.
[Figure 1: Ilustração do bloco de encaixe utilizado.]
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Table I - Representation of the studied models.
[Tabela I - Representação dos modelos estudados.]

Figure 2: Stress-strain curves for the studied blocks (a) and mortars (b).
[Figure 2: Curvas tensão x deformação para blocos (a) e argamassas 
(b) estudados.]
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a strength of 2.21±0.08 MPa, a longitudinal deformability 
modulus of 1.42±0.10 GPa, and a transversal elastic 
modulus of 0.51±0.06 GPa. The prisms with the presence 
of mortar presented increases in strength (2.34±0.05 MPa), 
longitudinal deformability modulus (1.69±0.11 GPa), and 
transversal deformability modulus (0.54±0.06 GPa). This 
could evidence that the use of mortars in masonry prisms 
would cause an increase in the modulus of deformability, 
making the material more fragile. However, as reported in 
several studies [33-36], this is not the behavior presented 
by structural masonry walls when mortar is used. How to 
explain this inconsistency in the data presented?

The calculation of the deformability modulus of the 
prisms with mortar was performed using the theory based 
on Hooke’s law, σ=E.ε, which assumes that this material 
exhibits linear elastic behavior. However, this statement 
is not always valid. Moreover, structural masonry walls 
produced with ceramic blocks (with or without mortar) are 
extremely fragile materials, and it is known that this type 
of material has practically no plastic deformation [37, 38]. 
Therefore, the calculation of the deformability modulus 
must encompass the entire region of the stress-strain plot. As 
discussed before, prisms presenting mortar work as elastic 
supports, composed precisely by mortars, as shown in Fig. 
4. It is known that elastic materials, such as springs, do not 
necessarily present linear behavior, as discussed before. 
There are some theories of nonlinear elasticity, such as 
Ghost’s, Duffing’s, and Martin, Roth, and Stiehler’s theories 

[19, 20], which are valid for spring systems and was verified 
for structural masonry prisms, with and without mortar. 
Therefore, other ways of calculating the deformability 
modulus of the prisms with mortars should be used, 
considering that the prism has the behavior of a nonlinear 
spring. The main mathematical formulations that represent 
the behavior of nonlinear springs are described below. These 
formulations were applied in the study of prisms with and 
without mortar, performing an analysis of the deformability 
properties that occur in each of these theories.

The first nonlinear approach studied was Ghosh’s 
equation (Eq. A) [39]. In this expression, it is considered 
that the stress does not vary linearly with the deformation, 
but rather they have a power-law dependence given by:

s = K. eP     (A)

where σ is the stress subjected to the material, K is 
the stiffness to deformation, a similar concept to the 
deformability modulus, ε is the deformation undergone by 
the material, and p is an exponent related to the nonlinearity 
of the material, generally quadratic or cubic. It is worth 
mentioning that if the Ghosh equation is used with p=1, 
the equation proposed by Hooke’s law is obtained. Thus, 
the difference between Hooke’s equation and Ghosh’s 
equation is the change in the order of exponent that relates 
stress and strain. Using the relation established by Eq. A, the 
following rigidities (longitudinal deformability modulus) 
were obtained for the prisms studied (Table II): using 
p=2 stiffness of 1.27±0.14 GPa for prisms without mortar 
and 1.22±0.11 GPa for raw materials with mortars; using 
p=3 stiffness of 1.24±0.09 GPa for raw materials without 
mortar and 1.12±0.06 GPa for prisms with mortar. It was 
verified that the stiffnesses obtained by both quadratic and 
cubic models were statistically equivalent to the use of the 
Ghosh’s model. This is not yet the expected model for the 
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Figure 3: Stress-strain curves for prisms without (a) and with (b) 
mortar.
[Figure 3: Curvas tensão x deformação dos prismas sem (a) e com 
(b) argamassa.]

Figure 4: Representation of a prism with mortars functioning as 
elastic support.
[Figure 4: Representação de um prisma com argamassas 
funcionando como suporte elástico.]
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behavior of mortar prisms, since several studies report the 
reduction of stiffness and better parameters of deformability 
in structural masonry walls with mortar [33-36]. Based on 
the coefficient of determination (R²) values obtained (Table 
II) for the analyzes that considered Hooke’s law or the 
Ghosh equation with p=2 and p=3, it was verified that the 
use of models of order higher than 1 improves the regression 
analysis, which proved that structural masonry prisms have 
a closer mechanical behavior proposed by Ghosh than the 
classic model established by Hooke.

Another model of nonlinear springs proposed by Duffing 
is given by [40-42]:

s = b.e + a.e3     (B)

where β represents the equivalent rigidity of the material, 
and α represents a nonlinear approximation to the oscillation 
submitted to the studied system as a result of loading and 
unloading. The α parameter can be defined as the damping 
characteristics of the studied physical system. Again, it is 
worth noting that for cases where α is equal to zero, the 
Duffing equation becomes the unidirectional Hooke’s law. 
This equation is applied to cyclic systems, where loading 
and unloading occur in the mechanical systems (usually 
springs) studied. Therefore, it is verified that the Duffing 
equation proposes the addition of another constant in the 
equation, relating stress and deformation through two 
properties, the rigidity of the system and its damping 
capacity. Applying Eq. B in the stress-strain diagrams shown 
in Fig. 3, we obtained β of 1.67±0.14 and 1.38±0.11 GPa and 
α of (1.30±0.07)x106 and (1.16±0.17)x106 GPa for prisms 
without and with mortar, respectively. It was observed with 
the use of this model that the prisms with mortars obtained 
less rigidity than the raw ones without mortar. This model, 
therefore, followed the logic established in the literature [33-
36] and can be considered as a good approximation model 
for the behavior of structural masonry walls, although the R² 
regression values obtained by the model were smaller than 

those obtained by the Ghosh’s equation (Table II). About the 
damping capacities provided by the mortar, the mortar-free 
premixes had lower damping since the α values obtained 
were higher for this wall pattern. Thus, it is possible to 
understand how mortars interfere in the deformability of 
structural masonry walls, based on the model detailed by 
Eq. B. Deformability improvements should be attributed to 
two factors: reduction of stiffness and increased damping 
obtained using mortars.

The last model used to study deformability in structural 
masonry walls using prisms is defined by the equation of 
Martin, Roth, and Stiehler [43, 44]:

 s
M

 = (e-1 - e-2). eA.(e - e-1)    (C)

where M represents Young’s modulus (modulus of 
deformability of the material), and A is a fitting parameter, 
ranging from 0.32 to 0.42 (usually A is adopted as 0.38). 
The equation proposed jointly by Martin, Roth, and Stiehler 
was initially used for elastomeric materials, that is, natural 
or synthetic polymers that have as the main characteristic 
the high elastic deformations when submitted to loads. A 
typical example of elastomer is natural rubber. Thus, it is 
worth noting that unlike all other theories presented, which 
are based on polynomial adjustments, Martin, Roth, and 
Stiehler’s equation relates stress and strain exponentially. To 
calculate the parameter presented, the value of A was used 
as 0.38, as highlighted in other studies. The values of M 
obtained (Table II) were 3.14±0.17 and 2.78±0.21 GPa for 
the prisms without and with mortar, respectively. However, 
the values obtained were very high, being higher than the 
values obtained for the deformability modulus found for the 
isolated ceramic blocks. Moreover, the values were above 
those usually found in the literature [33-36]; therefore, 
the Martin, Roth, and Stiehler’s model was discarded as 
a possible approximation to the behavior of deformability 
in structural masonry walls. This fact makes sense since 
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Table II - Deformability parameters obtained.
[Tabela II - Parâmetros de deformabilidade obtidos.]

Model studied Prism without mortar Prism with mortar

Hooke’s law
E (GPa) 1.42±0.10 1.69±0.11

R² 0.693-0.712 0.705-0.723

Ghosh equation (p=2)
K (GPa) 1.27±0.14 1.22±0.11

R² 0.891-0.923 0.912-0.945

Ghosh equation (p=3)
K (GPa) 1.24±0.09 1.12±0.06

R² 0.967-0.986 0.973-0.992

Duffing equation
β (GPa) 1.67±0.14 1.38±0.11
α (GPa) (1.30±0.07)x106 (1.16±0.17)x106

R² 0.751-0.876 0.812-0.898

Martin, Roth, and Stiehler 
equation (A=0.38)

M 3.14±0.17 2.78±0.21
R² 0.570-0.662 0.592-0.703
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structural masonry bonnets cannot have their deformability 
compared to elastomers like natural rubber. Moreover, the 
R² values obtained (Table II) were very low, indicating a 
weak fitting to the proposed model, mainly because of the 
mathematical difficulty of using Eq. C in the stress-strain 
curves of Fig. 3.

CONCLUSIONS

The proposed study consisted of evaluating structural 
deformability properties using three-row prisms with and 
without mortar. The ceramic blocks used were fired at 890 
ºC and defined as plug-in block geometry. The mortars 
studied were made in a ratio of 1:1:5:0.5 of cement: hydrated 
lime: sand: PVA binder. Compression tests were performed 
on the two materials separately to obtain the strength and 
deformability parameters of both materials in order to verify 
the consistency of the obtained values. It was concluded 
that both materials were compatible with those commonly 
used in structural masonry. About the prisms, elements were 
made with three rows, with and without the use of mortars. 
The focus of the study was to obtain the deformability 
parameters. Using the linear relationship established by the 
Hooke’s law, values of deformability modulus of 1.42±0.10 
GPa for the prisms without mortar and 1.69±0.11 GPa for 
the prisms with mortar were obtained. These values were 
considered unsatisfactory since it does not make sense that 
structural masonry increases its stiffness using mortars. 
Thus, other elastic, nonlinear models were used to analyze 
the deformability parameters of the prepared prisms. 
Ghosh’s equation was used quadratically and cubically. 
Although regression values higher than the Hooke’s model 
were obtained, the analysis performed through this model 
was discarded since there was a statistical equivalence 
between the rigidity obtained for the prisms with and 
without mortar, a fact invalidated based on the literature. 
The model from Duffing showed lower regression than the 
Ghosh’s model, but was considered satisfactory since the 
obtained deformability parameters were highly coherent. 
That is, prisms with mortar showed better deformability 
behavior than those without mortar. In the model detailed 
by the Duffing’s equation, the deformability is defined in 
terms of stiffness, reduced for prisms with mortar. Finally, 
the model of Martin, Roth, and Stiehler was analyzed, which 
in addition to presenting low regression values because of 
the mathematical difficulty of the implementation of the 
equation, led to very high values of rigidity, leading the 
model to be considered incoherent. The conclusion was that 
the parameters of deformability of structural masonry walls 
produced with ceramic blocks and mortar could be defined 
approximately according to two parameters: rigidity and 
damping of the material. This behavior is defined in terms of 
the Duffing’s equation for nonlinear elasticity.
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