Objective: To present the clinical case and update the bibliography. Methods: A male patient, 24 years of age, sought treatment for right lumbosciatalgia of 3 years of evolution with topography L5 and motor deficit (M4). The radiograph showed a radiopaque lesion between the fourth and fifth lumbar vertebrae, with right pedicle effacement of L4. The tomography identified a lytic lesion, partially surrounded by sclerosis with a central nest of 3 centimeters in diameter located in the right pedicle with involvement of the transverse apophysis and reaction of the intertransverse space (Enneking 3). It was complemented by magnetic resonance and bone scintigraphy. The percutaneous biopsy guided by tomography yielded a diagnosis of osteoblastoma and foci of necrosis. A radical block resection was performed with clear tumor margins and instrumented stabilization. Results: After the surgical treatment, the patient evolved favorably, reversing the motor deficit. The anatomopathological study of the specimen confirms the preoperative diagnosis. Discussion: Intralesional resection may be an option in Enneking stage 2. In Enneking stage 3, a percutaneous diagnostic biopsy may be useful, and block resection is the preferred definitive treatment. Conclusions: The management of spinal osteoblastoma requires an exhaustive clinical-imaging analysis. Block resection with clear margins is preferred in advanced cases for management and to decrease the risk of recurrence.

Keywords: Osteoblastoma; General surgery; Radionuclide imaging; Biopsy.
INTRODUCTION

Osteoblastoma (OBL) is a rare benign primary bone tumor that produces primary bone and mainly affects the long bones. The incidence of OBL is low and the male to female ratio is 2:1. It accounts for 1% of all bone tumors and around 40% are located in the spine, most often involving the posterior elements. Histologically, they are indistinguishable from the smaller osteoid osteomas (OO). OBL is usually larger than 2 cm in diameter, while OO is 1.5 cm or less. These primary bone cancers (PBC) tend to predominate in the pediatric population during the second decade of life.

Both OBL and OO can present a wide range of clinical manifestations. Between 15% and 25% of these tumors are locally aggressive or have the potential for malignant transformation. According to the literature, there are two types of OBL: conventional OBL (COBL) and aggressive OBL (AOBL). Radiographically, AOBL has a greater tendency to present lytic characteristics than its conventional counterpart.

Surgical resection is the main treatment for spinal OBL, with high recurrence rates in subtotal resections. Some have proposed total resection (TR) for Enneking II tumors and block resections (BR) for Enneking III or AOBL variants. TRs are highly invasive, more technically difficult surgeries and are associated with high rates of morbidity and mortality.

According to the literature, there are two types of OBL: conventional OBL (COBL) and aggressive OBL (AOBL). Radiographically, AOBL has a greater tendency to present lytic characteristics than its conventional counterpart.

Surgical resection is the main treatment for spinal OBL, with high recurrence rates in subtotal resections. Some have proposed total resection (TR) for Enneking II tumors and block resections (BR) for Enneking III or AOBL variants. TRs are highly invasive, more technically difficult surgeries and are associated with high rates of morbidity and mortality.

BR refers to the removal of the tumor in one piece. Other options are curettage (CU) and fragmentary resection (FR), which refers to deliberate intralesion resection.

The management of these PBCs requires a highly specialized multidisciplinary team. Surgery is considered a key element of their treatment. Achieving adequate margins is fundamental to improve survival and reduce local recurrence.

Here we present the case of a patient with OBL in L4 treated with BR and his follow-up for six months following surgery.

METHODS

We present the case of a male patient, 24 years of age, who sought treatment for right lumbosciatalgia of 3 years of evolution and authorized in writing the anonymous presentation of the case. Analysis by the Institutional Review Board was not necessary.

In the physical examination, he had low back pain radiating to the right lower limb (L4 region), with positive Lasègue’s sign and M4 motor deficit.

In the X-ray, a radiopaque lesion was observed between the fourth and fifth vertebrae with diffuse borders and involvement of the intertransverse space. (Figure 1)

In the computed tomography, a lytic area surrounded by sclerosis with a central nest of 2 centimeters in diameter in the right pedicle of the fourth lumbar vertebra could be identified with expansion towards the surrounding soft tissue and irregular borders, compromising the right transverse apophysis and reaction of the intertransverse space. (Figure 2)

The management of these PBCs requires a highly specialized multidisciplinary team. Surgery is considered a key element of their treatment. Achieving adequate margins is fundamental to improve survival and reduce local recurrence.

Here we present the case of a patient with OBL in L4 treated with BR and his follow-up for six months following surgery.

METHODS

We present the case of a male patient, 24 years of age, who sought treatment for right lumbosciatalgia of 3 years of evolution and authorized in writing the anonymous presentation of the case. Analysis by the Institutional Review Board was not necessary.

In the physical examination, he had low back pain radiating to the right lower limb (L4 region), with positive Lasègue’s sign and M4 motor deficit.

In the X-ray, a radiopaque lesion was observed between the fourth and fifth vertebrae with diffuse borders and involvement of the intertransverse space. (Figure 1)

In the computed tomography, a lytic area surrounded by sclerosis with a central nest of 2 centimeters in diameter in the right pedicle of the fourth lumbar vertebra could be identified with expansion towards the surrounding soft tissue and irregular borders, compromising the right transverse apophysis and reaction of the intertransverse space. (Figure 2)

RESULTS

Eight days after the block resection of the tumor, the left pedicle screw of L5 had to be replaced to correct bad positioning. The
stitches were removed after 15 days and at 3 months following surgery, the motor deficit had been reversed.

At 7 weeks, the definitive results of the anatomicopathological study of the block of bone were received and confirmed the preoperative diagnosis, indicating trabecular bone with signs of remodeling, foci of osteoblastoma, and areas of necrosis.

DISCUSSION

The Enneking system for stratification and characterization of benign bone tumors is used to define the OBL stages. The classification scheme is based on the radiographic tumor margins. The three stages of this system are defined as latent, active, and aggressive. Enneking stage II OBLs (active) show a combination of lytic and sclerotic changes with well-defined borders. They are similar to OOs, with lytic regions in the periphery of the ossified nucleus and they do not invade the surrounding soft tissues. Stage II lesions (aggressive) have predominantly osteolytic behavior. They erode the margins of the cortical bone and can enter the spinal canal and infiltrate the soft tissues.3

Fine needle puncture-aspiration can be used in the preoperative diagnosis. This diagnostic modality can be used for osteoblastomas and other spinal bone tumors. When epidural extension causes neurological deficit, puncture-aspiration enables early diagnosis.3

In a recent systematic review, Harrop5 found that the AOBL variant (Enneking III) is associated with a local recurrence rate greater than 50% following a BR, while the COBL variant (Enneking II) has a recurrence rate between 10% and 15%. In this review, FR can be strongly recommended for COBL (Enneking II), while BR, when anatomically feasible, is highly recommended for AOBL (Enneking III).5

Collignon6 et al. reached similar conclusions in their work. For the treatment of AOBL (EIII), a more aggressive strategy must be elected. A resection that attempts to remove a piece with tumor-free margins should be the first treatment option. The risks of these more demanding procedures are justified due to the greater risk of recurrence and progression to malignancy with less aggressive treatments.

When anatomic limitations or tumor volume prevent the execution of a block resection with suitable margins, or when the patient refuses to risk the morbidity associated with the BR or is not clinically able to undergo this type of surgery, radiotherapy (RT) can be a good option. The use of adjuvant RT is also valuable in recurrent or incompletely resected lesions.1,3

Multiple studies have published quality of life (QOL) scores comparable to those of the normal population following block resection, with only a few of them reporting scores slightly lower than the general population.7 The “physical component” of these QOL scores is usually the one affected after block resection. This may be attributed to the resection of soft tissues (muscle, nerves) and complex reconstructions that result in deterioration of the spine. Improved QOL scores have been reported only after three years following surgery.7 As is to be expected, QOL scores are lower in patients with active tumor load as compared to patients who are free from the disease.

Radiotherapy as a treatment for OBL is a controversial subject among the experts. It has been reported that RT may in fact be associated with late sarcomatous change and that it is a potentially ineffective therapeutic modality.2 Other authors have suggested its use as an adjuvant following intralesional curettage of EII OBLs that may not be operable by block resection.2,3,5

Even with an acceptable extent of the resection, recurrence rates are approximately 10%.3 There is controversy around whether spinal fusion should be performed following resection. The precise definition of spinal instability has not been clear in the literature, The Spinal Oncology Study Group (SOSG) defines spinal instability as “a loss of spinal integrity” resulting from a neoplastic process, associated with pain related to movement, symptomatic or progressive deformity, and/or neural compromise under physiological loads.1,3,5 The SOSG recently developed the SINS (Spinal Instability Neoplastic Score) as a method for identifying preoperative instability in spinal oncology. Although it was described initially and has been applied mainly to metastatic spine disease, several authors suggest its use as a guide for making decisions about whether or not fusion is needed.8

CONCLUSIONS

The management of spinal osteoblastoma requires an exhaustive clinical-imaging analysis.

In cases where a benign Enneking II (active) tumor is suspected, it is possible to opt for intralesional resection and curettage.

In contrast, for stage III (aggressive) tumors, it may be useful to first perform a biopsy, carefully directing the route of the puncture, and then a block resection with free margins is suggested to manage the lesion and to reduce the risk of recurrence.

All authors declare no potential conflict of interest related to this article.

REFERENCES