INFLUÊNCIA DE ÉPOCAS DE SEMEADURA SOBRE O DESENVOLVIMENTO DA PLANTA, RENDIMENTO E QUALIDADE FISIOLOGICA DE SEMENTES DE RABANEDE

INFLUENCE OF SEEDING DATES IN PLANT DEVELOPMENT, YIELD AND PHYSIOLOGIC QUALITY OF RADISH SEEDS

Jerônimo Luiz Andriolo* Galileo Adeli Buriol**

**

Resumo

Com o objetivo de determinar as exigências bioclimáticas para o crescimento e desenvolvimento da planta, o rendimento, germinação e vigor das sementes produzidas, foram realizadas semeaduras de rabanete, cv. Saxa, nas datas de 12/06, 10/07, 20/08 e 29/09, em 1986, e de 02/06, 15/07, 21/08 e 20/09, em 1987, em Santa Maria, RS. Utilizou-se o delineamento experimental de blocos casualizados, com quatro repetições e população de 129 e 26 plantas na área útil, respectivamente em 1986 e 1987. Determinou-se as datas de ocorrência da emergência, pendimento, floração e maturação e o rendimento, germinação e vigor das sementes. Os resultados indicaram que a temperatura do ar é o elemento que mais influencia o crescimento e o desenvolvimento da planta. O rendimento, germinação e vigor das sementes foram baixos em todas as épocas, influenciados principalmente pelas condições ambientais ocorrentes no período de maturação das sementes.

Palavras-chave: rabanete, épocas de semeadura, rendimento de sementes, qualidade de sementes, temperatura base, soma térmica.

Summary

Radish was seeded in Santa Maria, RS, in five seeding dates, in order to determine the bioclimatic parameters for plant growth and development, seed yield and seed quality. The block randomized experimental design was utilized, with four replications and populations of 129 and 26 plants per plot, respectively in 1986 and 1987. The dates of plant emergence, bolting, flowering and maturity, and seed yield, germination and vigor were determined. The results showed the air temperature is the main factor influencing the plant growth and development. The values of seed yield, germination and vigor were low in all seeding dates, influenced mainly by the environmental conditions occurred during the maturation period.

Key Words: radish, seeding dates, seed yield, seed quality, base temperature, day-degrees.

Introdução

A maior parte das sementes de

*Engenheiro Agrônomo, Mestre, Professor Assistente. Departamento de Fitotecnia da Universidade Federal de Santa Maria, 97.119 - Santa Maria, RS.

**Engenheiro Agrônomo, Doutor, Professor Titular. Departamento de Fitotecnia da Universidade Federal de Santa Maria, RS, 97.119 - Santa Maria, RS.
hortaliças utilizadas no Brasil é import-
tada, proveniente principalmente da Eu-
ropa, Estados Unidos e Japão (NAGAI et
al, 1985). Uma das causas limitantes da
produção inexpressiva de sementes no pa-
ís é a escassez de informações sobre as
exigências bioclimáticas e o potencial
de produção da maioria das espécies. Ex-
iste apenas um pequeno grupo de hortali-
ças para as quais é possível indicar
regiões potencialmente preferenciais à
produção de sementes. Entre essas regi-
ões destaca-se o sudeste do Rio Grande
do Sul, tradicional produtor de seme-
tes de cebola (AMARAL et al, 1987).
São muito escassas as informações
bibliográficas abordando a produção de
sementes de rabanete (Raphanus sativus
L.). Muitas espécies pertencentes à fa-
mília das crucíferas apresentam siste-
mas de auto-incompatibilidade entre o
pólen e o estigma das flores de uma mes-
ma planta (MATSUBARA, 1980; GIORDANO,
1983; STANTON, 1987). Também são raras
as indicações referentes à implantação e
manejo de lavouras destinadas à produção
de sementes. Resultados de pesquisas con-
duzidas na Índia, com cultivares locais,
apontam a necessidade de adubações ni-
rogenadas em níveis de até 150kg de N
por hectare e populações desde 28.000
plantas/ha até 111.000 plantas/ha, a fim
de obter produtividades de até 2.200kg
de sementes por hectare (SINGH & CHEEMA,
1972; YADAV et al, 1974; NAUTIYAL & LAL,
1984; RAWAT & SINGH, 1984; SHARMA & LAL,
1986; RASTOGI et al, 1987). Entretanto,
KNOTT (1962) indicou para as cultivares
norte-americanas, populações variáveis
desde 27.800 plantas/ha até 434.700 plan-
tas/ha, com rendimentos potenciais da
ordem de 560kg até aproximadamente 900kg
de sementes por hectare.

No Brasil, não existem indicações
bibliográficas informando sobre a exis-
tência de produção comercial de sementes
de rabanete. Também não são conhecidas
as exigências bioclimáticas das cultiva-
res utilizadas no País e o seu potencial
de produção. A realização deste trabalho
teve como objetivo determinar as exigên-
cias bioclimáticas para o crescimento e
desenvolvimento da planta e o rendimento
e qualidade fisiológica de sementes de
rabanete, cv. Saxa, nas condições climá-
ticas de Santa Maria, RS.

MATERIAL E MÉTODOS

As semeaduras foram realizadas em quatro épocas, nas datas de 12/06, 10/07, 20/08 e 29/09, no ano de 1986, e de 02/06, 15/07, 21/08 e 20/09 no ano de 1987, no Campo Experimental do Departamento de Fitotecnia da Universidade Federal de Santa Ma-
ria (UFSM), RS, latitude: 29°41' Sul, longitude: 53°
48' Oeste e altitude: 95,00m. O clima se enquadrava em "cfa" da classificação de Köeppen (MORENO, 1961). O solo do local pertence à Unidade de Mapeamento
São Pedro, classificado como Podzólico Vermelho A-
marelo Distrófico (BRASIL, 1973).

A adubação de manutenção seguiu as recomenda-
ções da análise do solo, realizada no Laboratório de Análise de Solos da UFSM, nos níveis equivalen-
tes a 40kg/ha de N, 90kg/ha de P₂O₅ e 60kg/ha de K₂O.

O delineamento experimental utilizado foi de
blocos casualizados, com quatro repetições. A semeadura foi realizada manualmente, em parcelas cons-
tituídas por quatro fileiras de plantas, correspon-
dendo as duas fileiras centrais à área útil da par-
cela (3,6 metros quadrados). Procedeu-se o desbaste
aos 20 dias após a semeadura, mantendo-se uma popu-
lação de 129 e 26 plantas na área útil da parcela,
correspondendo a populações equivalentes a 358.333
plantas/ha e 72.222 plantas/ha, respectivamente em
1986 e 1987. A unidade do solo foi mantida sempre
próxima à capacidade de campo, durante todo o ciclo
das plantas, através da irrigação.

Foram registradas as datas de emergência, pen-
doamento, floração e maturação das plantas. Detec-
minou-se o número de ramificações, altura, percentagem de acamamento e quebra das plantas, bem como o rendimento, germinação e vigor das sementes. A data de emergência considerada foi a do dia em que surgiram as primeiras plantas na área útil da parcela; as datas de pendoamento e floração quando as respectivas fases foram constatadas em 50% e 100% das plantas da área útil, respectivamente nos anos de 1986 e 1987. A data de maturação foi registrada no dia em que 50% das plantas da área útil apresentaram uma coloração marron nas hastes e síliquias. A colheita, em cada época, foi realizada numa única operação, mediante o corte do caule ao nível do solo, quando 100% das plantas haviam atingido a fase de maturação. As determinações de altura e número de ramificações foram procedidas em 20 e 10 plantas da área útil, respectivamente, em 1986 e 1987; as de acamamento (plantas formando com a linha horizontal um ângulo de menos de 45°) e quebra em todas as plantas da área útil, no momento da colheita.

Depois desta operação, as plantas foram expostas ao sol durante sete dias, precedendo à realização manual da trilha e limpeza das sementes. As sementes limpas foram analisadas quanto à germinação (BRA-SIL, 1976) e vigor, este último teste realizado em câmara de envelhecimento precoce, à temperatura de 42°C, umidade relativa do ar de 100% e período de exposição de 48 horas. O rendimento foi determinado por meio de pesagem das sementes, após previsão secagem das mesmas até um teor de umidade de 8%.

A temperatura base foi determinada pelo método da menor variabilidade, proposto por ARNOLD (1959):

\[Sd(tb) = \frac{Sdd}{t - tb}, \]

onde:

- \(Sd(tb) \) = desvio padrão, em dias, da série de épocas de semeadura para cada suporte valor de \(tb \);
- \(Sdd \) = desvio padrão, em graus-dia, da série de épocas de semeadura para cada suporte valor de \(tb \);
- \(t \) = temperatura média de toda a série de épocas de semeadura;
- \(tb \) = temperatura base.

Para o subperíodo semeadura-emergência foram utilizados os valores das temperaturas do solo, determinados a 20cm de profundidade, no solo desnudo. A temperatura média do solo mantém-se constante com a profundidade e os respectivos valores das temperaturas máxima e mínima, na profundidade de 20cm, ocorrem em torno de 9 horas e 21 horas (SCHNEIDER, 1979). Assim sendo, calculou-se a temperatura média diária do solo a partir da média aritmética da temperatura máxima e mínima dessa profundidade. Para os outros subperiódos considerou-se um valor de temperatura diária do ar, obtido pela média aritmética da temperatura máxima e mínima registradas no abrigo meteorológico, a 1,5m acima do nível do solo. Os dados foram registrados na Estação Climatológica do Departamento de Fitotecnia da UFSM, instalada a aproximadamente 50m do local do experimento.

A soma térmica de cada subperíodo foi determinada pelo somatório dos graus-dia desde a data de início até o final do mesmo. O cálculo, para cada dia, foi realizado pela diferença entre a temperatura média diária do solo ou do ar e a temperatura base.

RESULTADOS E DISCUSSÃO

A Figura 1 apresenta a duração média dos diferentes subperiódos e do ciclo das plantas para cada época de semeadura. O subperíodo emergência-pendoamento (E-P) foi o que apresentou maior duração, em dias, seguindo-se os subperiódos floração-maturação (F-M), pendoamento-floração (P-F) e semeadura-emergência (S-E). A maior amplitude de duração entre épocas ocorreu no subperíodo E-P, decrescendo da primeira para a última época. Da mesma maneira, a duração do subperíodo P-F decresceu de forma pronunciada da primeira para a última época. Já nos subperiódos S-E e F-M a amplitude de duração entre épocas foi desuniforme.
FIGURA 1 - Duração dos subperíodos semeadura-emergência (S-E), emergência-pendoamento (E-P), pendoamento-floração (P-F) e floração-maturação (F-M) de plantas de rabanete em quatro épocas de semeadura. Santa Maria, RS, 1986 e 1987.
Considerando que a umidade do solo foi mantida próxima à capacidade de campo durante todo o ciclo das plantas, a diferença entre épocas, na duração dos diferentes subperiódicos, foi atribuída principalmente à temperatura do solo para o subperiódico S–E, temperatura do ar e fotoperíodo para o subperiódico E–P, temperatura do ar para o subperiódico P–F e temperatura, umidade do ar e número de dias de chuva para o subperiódico F–M. O abaixamento da temperatura do ar e do solo aumentou a duração de todos os subperiódicos, enquanto o aumento do fotoperíodo reduziu a duração do subperiódico E–P e a umidade do ar e o número de dias com chuva aumentaram a duração principalmente do subperiódico F–M. A duração do subperiódico E–P depende também das condições existentes para o crescimento e desenvolvimento da planta, pois a indução floral somente ocorre após a emissão de um determinado número de folhas (MITCHELL, 1972).

A Figura 2 apresenta a relação entre a temperatura base de crescimento e o desvio padrão, em dias, para os diferentes subperiódicos. A temperatura base encontrada foi de 8,0°C para os subperiódios S–E e E–P e de 11,0°C para o subperiódico P–F. Para o subperiódico F–M não foi atingido o ponto de mínima variabilidade, em dias, preconizado pelo método proposto por ARNOLD (1959). Este fato pode ter sido decorrência da umidade excessiva (Figura 3) durante o subperiódico, verificada principalmente no ano de 1986 e que deve ter prolongado a sua duração. Outro fator se deve, possivelmente, à utilização de parâmetros visuais (coloração de hastes e siliquas) na determinação das datas de maturação, as quais também sofrem a influência dos fatores ambientais.

Para o subperiódico E–P, a relação entre a temperatura média do ar e a duração do mesmo, em dias, (Figura 4) indica existir interação temperatura x fotoperíodo. Desta forma, a temperatura base de crescimento para este subperiódico pode não ser aquela encontrada neste trabalho, mas próxima a este valor.

Observando-se a temperatura base de crescimento encontrada em cada subperiódico, verifica-se que a soma térmica exigida para o rabanete completar o subperiódico S–E é de 38,6 graus-dia. E–P de 626,1 graus-dia e P–F de 224,1 graus-dia. Supondo-se para o subperiódico F–M a mesma temperatura base de crescimento do subperiódico P–F, a soma térmica é de 441,8 graus-dia.

Os valores médios da altura da planta, número de ramificações por planta e percentagem de plantas acamadas nas diferentes épocas de semeadura são apresentados na Tabela 1. A altura média da planta decresceu da primeira para a última época de semeadura. Isto ocorreu de maneira mais pronunciada no ano de 1986. Este parâmetro está diretamente relacionado com a duração da fase vegetativa das plantas, principalmente com a amplitude do subperiódico emergência-pendamento. Os valores mais baixos verificados no ano de 1987 se devem à menor população de plantas utilizada, pois, de um modo geral, nas plantas cultivadas em baixa densidade as ramificações basais tendem a atingir um crescimento maior que as superiores; sob elevada densidade, por sua vez, essas mesmas ramificações são fortemente inibidas pela competição existente, com maior estímulo ao crescimento apical.

O número médio de ramificações por planta apresentou pequena variação entre épocas de semeadura no ano de 1986 e as diferenças não foram significativas em 1987. Entretanto, os valores médios deste último ano foram mais baixos que aqueles de 1986, demonstrando um compor-
FIGURA 2 - Desvio-padrão, em dias, para diferentes temperaturas bases nos subperíodos estudados em plantas de rabanete.
FIGURA 4 – Relação entre a temperatura média do ar e número de dias do subperíodo emergência-floração (E-F) de plantas de rabanete, em quatro épocas de semeadura. Santa Maria, RS, 1986 e 1987.
tamento semelhante ao observado com a altura da planta.

A percentagem de plantas acamadas foi elevada em todas as épocas e nos dois anos de cultivo, demonstrando a fragilidade estrutural do caule, o que dificulta as operações de colheita e incide negativamente sobre o rendimento e a qualidade fisiológica das sementes. Observa-se também que os valores foram maiores nas épocas em que as plantas apresentaram um maior crescimento em altura e também naquelas em que a precipitação pluviométrica foi mais elevada (Figura 3).

A percentagem de plantas quebradas decresceu da primeira para a quarta época de semeadura, nos dois anos. Os valores mais elevados observados em 1986 estavam relacionados com a maior população de plantas e a consequente inibição do crescimento das ramificações basais das mesmas.

O rendimento de sementes decresceu das primeiras para as últimas épocas, nos dois anos. Essa queda no rendimento é consequência da redução do crescimento das plantas que se verificou com o retardamento da época de semeadura. De acordo com MITCHELL (1972), o crescimento vegetativo da planta na fase anterior à floração exerce influência decisiva sobre a produtividade. Entretanto, o rendimento de sementes sofre também a influência de fatores ambientais ocorrentes nas fases finais do ciclo, especialmente a precipitação pluviométrica. O rendimento semelhante observado entre a primeira e segunda épocas, em 1986, se deve à elevada precipitação pluviométrica (Figura 3) e quebra de plantas ocorridas na primeira época. O rendimento máximo de sementes (279kg/ha) foi obtido na primeira época do segundo ano de cultivo. Esse valor é extremamente baixo quando comparado com produtividades obtidas nos principais países produtores, da ordem de até 900kg/ha nos Estados Unidos (KNOTT, 1962) e 2.200kg/ha na Índia (SINGH & CHEEMA, 1972; YADAV et al, 1974). Embora a população de plantas utilizada no segundo ano tenha sido drasticamente reduzida, tornando-se mais próxima dos limites inferiores citados na literatura, não houve um acrécimo correspondente na produção de sementes. Uma das causas possíveis do baixo rendimento pode estar relacionada com a existência de auto-incompatibilidade entre o pólen e o estigma, também constatada por MATSUBARA (1980) em linhagens F, e por STANTON (1987) em populações selvagens de Raphanus sativus L.

Os resultados de germinação e vigor das sementes (Tabela 2) apresentaram grande variação entre as épocas. Um dos fatores que exerce influência marcante sobre a qualidade fisiológica das sementes são as condições meteorológicas ocorrentes no período de maturação. Os níveis de germinação e vigor têm relação com o estádio de desenvolvimento das sementes no momento da colheita (GLOBERSON, 1981). Dessa forma, para se obter sementes de boa qualidade é necessário que as plantas encontrem condições ambientais favoráveis para completar seu ciclo de desenvolvimento. A elevada precipitação pluviométrica ocorrida durante o período de maturação (Figura 3), acompanhada pela também elevada ocorrência de acamamento e quebra de plantas exerceu influência negativa sobre a maturação das sementes, com reflexos diretos sobre os parâmetros de germinação e vigor.

REFERÊNCIAS BIBLIOGRÁFICAS

** Dados transformados para \(r + 0.5 \) e arc sen \(r \), respeitando-se, para fins de análise estatísticas, a variância entre as medidas significativamente diferentes, a nível de 5%.

<table>
<thead>
<tr>
<th>Altura da Planta (cm)</th>
<th>Parâmetros</th>
<th>% C.V.</th>
<th>% C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/06 10/07 20/08 29/09</td>
<td>1986</td>
<td>1987</td>
<td>20/08</td>
</tr>
<tr>
<td>02/06 15/07 21/08 20/09</td>
<td>02/06</td>
<td>1987</td>
<td>20/08</td>
</tr>
</tbody>
</table>

Especas de Semeadura

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>ÉPOCAS DE SEMEADURA</th>
<th>1986</th>
<th>C.V.</th>
<th>1987</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12/06</td>
<td>10/07</td>
<td>20/08</td>
<td>29/09</td>
<td>%</td>
</tr>
<tr>
<td>Rendimento *</td>
<td>160a</td>
<td>159a</td>
<td>41b</td>
<td>46b</td>
<td>15,44</td>
</tr>
<tr>
<td>Germinação ,*</td>
<td>89a</td>
<td>84a</td>
<td>56b</td>
<td>60b</td>
<td>6,54</td>
</tr>
<tr>
<td>Vigor *,, ***</td>
<td>55a</td>
<td>58a</td>
<td>23c</td>
<td>35b</td>
<td>10,70</td>
</tr>
</tbody>
</table>

* Médias seguidas pela mesma letra não diferem significativamente entre si, DMRT 5%.

** Dados transformados para arc sen √x, para fins de análise estatística.

*** Vigor: Câmara de envelhecimento precoce, 42ºC, 100% U.R. do ar e 48 horas de exposição.