EMPREGO DA DETOMIDINA COMO MEDICAÇÃO PRÉ-ANESTÉSICA EM EQUINOS ANESTESIADOS COM HALOTANO*

DETOMIDINE AS PREANESTHETIC MEDICATION IN EQUINE HALOTHANE ANESTHESIA

Cláudio Corrêa Natalini** Rui Afonso Vieira Campello***
Augusto José Savioli de Almeida Sampaio**** Irene Breitsameter*****

RESUMO

Foram investigados os efeitos do cloridrato de detomidina como medicação pré-anestésica em equinos anestesiados com halotano e submetidos à laparotomia mediана pré-retrombical. Os parâmetros de frequência cardíaca e respiratória, tempo de reperfusão capilar, equilíbrio ácido-base, equilíbrio hidroelétrico e o perfil hematológico foram analisados. Os equinos foram tratados com detomidina e anestesiados com tiopental sódico e halotano em oxigênio a 100%. A avaliação da técnica demonstrou facilidade de manuseio no período pré-operatório e indução sem excitação. As frequências cardíaca e respiratória diminuíram significativamente. A hematologia e o equilíbrio hidroelétrico e ácido-base sofreram alteração significativa nos tempos estudados. O protocolo utilizado demonstrou ocorrer acidose respiratória aguda estando os valores obtidos dentro da variação aceita para equinos sob anestesia geral volátil, posicionados em decúbito dorsal.

Palavras-chave: anestesia, detomidina, equinos.

SUMMARY

This study examines the effects of detomidine as preanesthetic medication in equine halothane anesthesia during preretrombical midline laparotomy on physiological parameters of heart rate, respiratory rate, capillary refill time, acid-base and hydroelectrolytic balance and hematological profile. The anesthetic protocol included detomidine, thiopentone sodium and halothane/oxygen. Clinical Evaluation demonstrated an easy handle of the horses and smooth induction. Capillary refill time elevated but not significantly. Heart and respiratory rate changed significantly. Haematological and electrolytic parameters and acid base balance changed significantly. Respiratory acidosis with acidemia occurred but the data was acceptable for horses undergoing general halogenated anesthesia in dorsal recumbency.

Key Words: anesthesia, detomidine, horses.

INTRODUÇÃO

A contenção química combinando sedação e analgesia é bastante desejável na prática clínica com equinos, pelas características de temperamento e manejo desta espécie. A dor superficial causada por suturas cutâneas e tratamentos no casco e a dor visceral nas cólicas apresentam diferentes problemas quando se requer analgesia no equino em estação ou em decúbito sob anestesia geral.

O equino pode reagir de maneira lógica, agressiva e coordenada quando está sendo manejado, o que coloca em risco o animal e o homem.

As várias associações utilizadas como medicação pré-anestésica nesta espécie, incluem os tranquilizantes e opiáceos, entre eles acepromazina e metadona, acepromazina e meperidina e xilazina e morfina. Também são utilizados alguns fármacos isoladamente como os derivados fenotiazínicos e a xilazina (SHORT et al, * Apresentado como Dissertação de Mestrado no Curso de Pós-Graduação em Medicina Veterinária da Universidade Federal de Santa Maria (UFSM) - RS. 97119-900 - Santa Maria - RS.
** Médico Veterinário, Professor Assistente, Departamento de Clínica de Pequenos Animais (DCPA), Centro de Ciências Rurais (CCR), UFSM.
*** Médico Veterinário, Professor Titular do DCPA.
**** Médico Veterinário, Professor Assistente do Departamento de Clínica Veterinária do Centro de Ciências Agrárias da Universidade Estadual de Londrina. Caixa Postal 6001 - 86010-970 - Londrina - PR.
***** Médico Veterinário, Professor do Hospital de Clínicas Veterinárias, Universidade Federal do Rio Grande do Sul. Caixa Postal 2172 - 90001-970 - Porto Alegre - RS.
Os derivados fenotiazínicos são destituídos de propriedades analgésicas, enquanto a xilazina confere uma anestesia de curta duração e inadequadamente distribuída pela superfície corporal, não aumentando seu tempo de ação analgésica e sedativo máximo quando se aumenta a dose administrada (JOCHLE & HAMM, 1986). As substâncias morfinomiméticas possuem efeitos marcadamente analgésicos e podem causar alterações de comportamento e excitação nos equinos, havendo necessidade de associá-las a sedativos.

O cloridrato de detomidina é uma substância agonista alfa-2-adrénergica com propriedades semelhantes às da xilazina, sendo mais potente analgésico e sedativo (SHORT et al, 1986).

Os anestésicos voláteis utilizados nos procedimentos cirúrgicos em equinos são o isofluorano e o halotano. O halotano vem sendo utilizado há vários anos, embora com a ocorrência de complicações cardiopulmonares que necessitem de suporte trans-operatório nos episódios de hipotensão arterial grave. Essas complicações sugerem um aprimoramento na técnica anestésica buscando uma estabilidade cardiovascular (HARVEY et al, 1987).

O objetivo deste estudo é o de investigar os efeitos do cloridrato de detomidina como medicação pré-anestésica em equinos anestesiados com halotano, com relação aos parâmetros hematológicos e ao equilíbrio hidroeletrolítico e ácido-base.

MATERIAL E MÉTODO

Foram utilizados 10 equinos, 6 machos e 4 fêmeas, sem raça definida, com idade variando de 1 a 14 anos e peso de 145 a 355kg. Os animais eram todos experimentais e foram considerados sadios e vermífugados. O trabalho experimental foi desenvolvido no Bloco Cirúrgico de Equinos, do Hospital de Clínicas Veterinárias da Universidade Federal de Santa Maria-RS.

Os equinos receberam o cloridrato de detomidina¹ na dose de 20mcg/kg, via venosa, em solução a 1%. Após 15 minutos, os animais foram posicionados adequadamente para a indução anestésica, com a colocação de travões.

Como agente indutor foi utilizado o tiopental sódico², na dose de 1g/150kg de peso corporal, via venosa em solução a 5%. Em seguida à indução, foi procedida a intubação orotraqueal, com sonda de calibre apropriado³. Após a intubação, o tubo traqueal era conectado ao aparelho de anestesia⁴, em sistema circular semi-fechado, com absorvedor de CO₂⁵.

A manutenção anestésica foi realizada com halotano⁶, sendo que a concentração alveolar mínima foi obtida com a utilização de concentração de volatilização de 5V% nos primeiros 20 minutos e 1 a 3V% durante o restante do período experimental. O oxigênio 100% foi utilizado como gás diluente do halotano, com fluxos variando de 10L/min. nos primeiros 10 minutos e 5L/min. durante o experimento.

Os equinos foram submetidos à laparotomia mediana pré-retrombilial, posicionados em decúbito dorsal. Durante o período trans-operatório os animais receberam por via venosa solução de Ringer com lactato de sódio⁶, na dose de 7ml/kg/h.

Para avaliação paramétrica dos valores fisiológicos registrados, foi realizada colheita de sangue venoso, para a dosagem de eletrólitos e hematologia. Para realização de análise de gases sanguíneos e pH as amostras de sangue foram colhidas da artéria facial ou carótida. Foram também registrados os dados referentes à frequência cardíaca e respiratória e de tempo de reperfusão capilar.

Os tempos referentes às colheitas das amostras de sangue e registros dos dados foram T0 (antecípitá administração da m.p.a.), T1 (30 minutos após a m.p.a.), T2 (120 minutos após a m.p.a.) e T3 (com 24 horas de pós-operatório).

A dosagem de eletrólitos foi realizada por espectrofotometria de chama⁷ para sódio e potássio.

A análise do cloro foi realizada por colorimetria. Para a realização do eletrograma, leucograma e hemoglobinometria foi utilizado contador de células automático⁸ e hemoglobinômetro. O método de microcentrífruga foi utilizado para confecção do hematócrito. Para dosagem de proteínas totais foi utilizada refratometria.

A análise de gases sanguíneos e pH foi realizada em equipamento adequado⁹.

Após o retorno do reflexo de deglutição os animais foram extubados e levados à recuperação, em local apropriado.

O tratamento estatístático dos dados obtidos foi realizado por análise de variância e teste de Tukey para a comparação de médias. O delineamento experimental foi o de blocos incompletos, utilizando-se o animal como critério de bloqueamento.

RESULTADOS

O efeito sedativo do cloridrato de detomidina foi efetivo, sendo que os animais foram facilmente manipulados.

A indução anestésica foi suave e a intubação orotraqueal foi realizada com facilidade. Após a conexão ao aparelho de anestesia e início da administração do halotano, o tempo médio para que os equinos atingissem o estágio e plano ideais de anestesia foi de aproximadamente 10 minutos.
A manutenção anestésica com halotano e oxigênio mostrou-se adequada para a técnica proposta. A utilização de fluxo de 02 de 5L/min. e concentração de vaporização do halotano de 1 a 3% no trans-operatório foi efetiva para manutenção da anestesia geral dos equinos.

O tempo médio de recuperação foi de 65,45 minutos. Na Tabela 1 estão apresentados os valores médios e o desvio padrão do peso, idade, tempo de indução e de recuperação dos equinos.

A Tabela 2 relaciona os valores médios, desvio padrão, teste F e teste de Tukey dos parâmetros cardiorespiratórios analisados.

Os valores hematólogicos obtidos e o tratamento estatístico estão listados na Tabela 3. Os valores médios, desvio padrão e teste F das dosagens de eletrólitos estão relacionados na Tabela 4. Na Tabela 5 estão listados os valores médicos e o tratamento estatístico das variações do equilíbrio ácido-base dos equinos, entre os tempos estudados.

TABELA 1 - Valores médios e desvio padrão do peso, idade, tempo de indução e de recuperação de equinos sedados com detomidina e anestesiados com halotano.

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Peso(kg)</th>
<th>Idade(anos)</th>
<th>Indução(s)</th>
<th>Recuperação(min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Médias</td>
<td>294,30</td>
<td>10,00</td>
<td>41,00</td>
<td>65,45</td>
</tr>
<tr>
<td>Desvio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Padrão ±</td>
<td>63,22</td>
<td>4,49</td>
<td>5,30</td>
<td>26,58</td>
</tr>
</tbody>
</table>

TABELA 2 - Valores médios, desvio padrão, teste F e teste de Tukey dos dados de parâmetros fisiológicos nos tempos estudados de equinos sedados com detomidina e anestesiados com halotano.

<table>
<thead>
<tr>
<th>variáveis</th>
<th>Tempo 0</th>
<th>Tempo 1</th>
<th>Tempo 2</th>
<th>Tempo 3</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>freqüência cardíaca</td>
<td>a 41,60±16,16</td>
<td>b 36,10±5,76</td>
<td>b 36,70±4,49</td>
<td>a 43,90±4,98</td>
<td>5,33</td>
</tr>
<tr>
<td>freqüência respiratória</td>
<td>a 13,00 ±4,54</td>
<td>b 8,40±2,15</td>
<td>b 8,20±2,44</td>
<td>a 14,20±2,40</td>
<td>**</td>
</tr>
<tr>
<td>Tempo de re-perfusão capilar (s)</td>
<td>< 1</td>
<td>< 2</td>
<td>< 3</td>
<td>< 2</td>
<td></td>
</tr>
</tbody>
</table>

p < 0,01 ** p < 0,05 * médias com a mesma letra não diferem estatisticamente pelo teste de Tukey.
TABELA 3 - Valores médios e desvio padrão, teste F e teste de Tukey dos dados hematológicos entre os tempos, de equinos sedados com detomidina e anestesiados com halotano.

Variáveis	Tempo 0	Tempo 1	Tempo 2	Tempo 3	F
Eritrócitos					
6 3 (10xmm)	7,56±0,72	6,60±1,00	6,68±0,75	8,15±1,10	6,49
Hemoglobina	ab	b	a	a	
(g/dl)	12,07±1,20	10,87±1,38	12,85±1,98	13,20±2,00	6,01
Leucócitos					
3 3 (10xmm)	ab	b	b	b	
	10,98±1,27	8,55±1,14	8,72±1,68	13,98±5,95	6,48
Hematócrito	ab	b	b	a	
(%)	36,00±3,90	32,30±3,39	34,20±3,00	39,50±6,30	5,46
Proteínas totais (g/dl)	a	ab	b	a	
	8,15±0,76	7,20±1,50	6,86±0,77	8,11±0,98	6,38

p < 0,01** p < 0,05* médias com a mesma letra não diferem estatisticamente pelo teste de Tukey.

TABELA 4 - Valores médios e desvio padrão, teste F e teste de Tukey dos dados de eletrólitos entre os tempos estudados de equinos sedados com detomidina e anestesiados com halotano.

Variáveis	Tempo 0	Tempo 1	Tempo 2	Tempo 3	F
Sódio (mEq/L)	a	a	a	a	
	143,00±4,40	143,20±4,60	146,20±8,44	143,20±8,00	0,75
Potássio	a	a	a	a	
(mEq/L)	4,39±0,33	4,30±0,40	4,68±0,60	4,20±0,40	0,89
Cloro (mEq/L)	a	a	a	a	
	105,00±0,70	101,30±12,00	99,00±10,02	102,30±7,90	2,49

Médias unidas pela mesma letra não diferem estatisticamente pelo teste de Tukey.
TABELA 5 - Valores médios e desvio padrão, teste F e teste de Tukey das variações do equilíbrio ácido-base de eqúinos sedados com detomidina e anestesiados com halotano.

<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Tempo 0</th>
<th>Tempo 1</th>
<th>Tempo 2</th>
<th>Tempo 3</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaCO2 (mmHg)</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>40,05±3,00</td>
<td>68,82±15,30</td>
<td>69,01±13,90</td>
<td>32,13±5,00</td>
<td>23,02</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>a</td>
<td>ab</td>
<td>b</td>
<td>**</td>
</tr>
<tr>
<td>PaO2 (mmHg)</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>86,00±7,90</td>
<td>161,60±84,00</td>
<td>150,10±64,00</td>
<td>89,70±7,00</td>
<td>4,92</td>
</tr>
<tr>
<td>SATO2 (%)</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>95,00±2,50</td>
<td>96,12±7,90</td>
<td>95,52±3,55</td>
<td>94,21±6,30</td>
<td>0,61</td>
</tr>
<tr>
<td>pH</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>7,36±0,10</td>
<td>7,23±0,15</td>
<td>7,24±0,11</td>
<td>7,35±0,10</td>
<td>11,23</td>
</tr>
<tr>
<td>HCO3 (mEq/L)</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>22,31±2,52</td>
<td>25,83±7,90</td>
<td>27,11±2,72</td>
<td>21,73±3,00</td>
<td>10,36</td>
</tr>
<tr>
<td>TCO2 (mEq/L)</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>21,18±3,36</td>
<td>27,91±3,90</td>
<td>28,91±2,92</td>
<td>22,90±3,00</td>
<td>10,95</td>
</tr>
<tr>
<td>Déficit de base (mEq/L)</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>-3,20±2,28</td>
<td>-3,10±3,60</td>
<td>-2,30±3,43</td>
<td>-3,60±1,90</td>
<td>5,33</td>
</tr>
</tbody>
</table>

** p < 0,01 * p < 0,05 Médias com a mesma letra não diferem pelo teste de Tukey.

DISCUSSÃO

VAINIO (1985), VIRTANEN et al (1985) e VIRTANEN (1985) afirmaram que a detomidina reduz efetivamente a atividade motora, sendo de vez em mais potente que a xilazina. Este efeito ocorre por sensibilização dos receptores pré-sinápticos, inibindo a liberação do neurotransmissor, noradrenalina, no sistema nervoso central. Estas afirmações coincidem com os resultados obtidos neste estudo, uma vez que os animais foram facilmente manejados, apresentando sonolência e resistência à locomoção.

A diferença estatisticamente significativa de frequência cardíaca do tempo 0 para os tempos 1 e 2, concorda com as afirmações de LANGER (1981), FLAVAHAM & McGrath (1982) e SAVOLA (1986). Estes autores afirmam que fármacos como a xilazina, clonidina e detomidina produzem aumento inicial da pressão arterial, seguido de queda desta pressão ocorrendo também bradicardia. Estas alterações são decorrentes de um equilíbrio de ações periféricas e centrais das substâncias adrenérgicas.

JOCHLE & HAMM (1986) e LOWE & HILFIGER (1986), realizaram estudos visando comparar a dose de 1mg/kg de xilazina via venosa com diferentes doses de detomidina. Como conclusões os autores afirmaram que a dose de 20mcg/kg de detomidina é ideal para casos em que se deseja a combinação de analgesia e sedação. Os procedimentos pré-operatórios realizados sob ação da detomidina nos animais de teste, confirmam esta citação pois o maneho foi adequado com a dose de 20mcg/kg.

SZELIGOWSKI et al (1986) realizaram uma série de cirurgias em eqúinos utilizando o cloridrato de detomidina como medicação pré-anestésica, indução com tiopental sódico e éter gliceril gualacolato e halotano para manutenção. A dose média de detomidina empregada foi de 40,40mcg/kg e a de tiopental sódico de 0,45g/100kg. O período de recuperação observado foi de 20 a 50 minutos, para procedimentos de duas horas. Os resultados do presente estudo demonstraram tempo de recuperação médio de 65,45 minutos. Este maior período de recuperação deve-se ao maior tempo de procedimento anestésico-cirúrgico, de três horas, e do uso de maior dose de tiopental sódico utilizada neste experimento de 0,66g/100kg.

GASTHUYS et al (1988), utilizaram da detomidina como medicação pré-anestésica em eqúinos na dose de 30mcg/kg via venosa, tiopental sódico e halotano. Foi observada marcada diurese com eliminação de sódio na urina, sem alterações nas concentrações do soro sanguíneo, aumento da concentração plasmática de potássio, estabelecimento de acidosse respiratória aguda por aumento da PaCO2. Os autores não recomendam a utilização da detomidina como medicação pré-anestésica em eqúinos com desequilíbrio hidroeletrólítico, em razão da marcada excreção urinária de sódio. No presente experimento foram observados resultados semelhantes à exessão da deteção de sódio na urina, que não foi pesquisado e do aumento da concentração de potássio plasmático que não esteve alterada.

Como afirma ROBERTSON (1989), o excesso de base é um parâmetro utilizado para acessar alterações metabólicas. Assim um resultado negativo reflete...
um estado de acidose metabólica ou seja, um défice de base. No presente estudo não ocorreram alterações altamente significativas no E. B., embora ocorresse aumento da PaCO₂. Este efeito deve-se ao efeito compensatório do aumento do HCO₃⁻ e confirma a ocorrência de acidose respiratória aguda sem componente metabólico.

SHORT et al (1986) utilizaram doses de 20 a 60mcg/kg de detomidina em equínios anestesiados com halotano. Os animais apresentaram estado de sedação em 2 a 4 minutos. Ocorreu redução na frequência respiratória durante 5 minutos, com manutenção da respiração espontânea. A PaO₂ diminuiu e a PaCO₂ aumentou, sendo que o pH arterial manteve-se dentro dos valores aceitáveis para equínios sob anestesia geral. Os resultados deste estudo demonstraram efeitos semelhantes e a diminuição da frequência respiratória explica a elevação da PaCO₂ e consequente diminuição do pH.

RICKETTS (1986) utilizou a detomidina como m.p.a. na dose de 20mcg/kg iv e tiopental sódico 5mg/kg iv obtendo resultados semelhantes aos deste experimento, como décubito lateral suave.

CONCLUSÕES

1 - O cloridrato de detomidina na dose de 20mcg/kg via venosa, o tiopental sódico 1g/150kg venoso e halotano em equínios sob respiração espontânea e em décubito dorsal, produz acidose respiratória aguda com acidez, sem desoxigenação arterial.

2 - A utilização do cloridrato de detomidina seguida de tiopental sódico, permite a intubação orotraqueal em equínios.

3 - A anestesia geral com tiopental sódico e halotano em equínios pré-tratados com cloridrato de detomidina, altera significativamente os parâmetros hematólogicos de eritrócitos, hemoglobina, hematocrito e leucócitos.

4 - O cloridrato de detomidina pode ser recomendado como medicação pré-anestésica na dose de 20mcg/kg via venosa, em equínios anestesiados com tiopental sódico e halotano.

FONTES DE AQUISIÇÃO

a - DOMOSEAN, Ciba-Geigy Química S.A., São Paulo/SP.
b - THIONEMBUTAL, Abbott Laboratórios do Brasil Ltda, São Paulo/SP.
c - SONDA TRAQUEAL, Snyder Laboratories, New Philadelphia, Ohio, USA.
d - V.M.L., Fraser & Sweatman inc., Broadway, Lancaster, New York, USA.
e - SODASSORB, Daren S.A.I.C. Primera Junta, Queñines, Argentina.
f - HALOTANO, Hoentsch Química S.A., São Paulo/SP.
g - SOLUÇÃO DE RINGER CLACTATO, Lab. Barso Ltda, Ribeirão Preto/SP.
h - FH 500, Conring Inc., Lemkamp. UK.
i - CLORETOS, Labtest Sistemas Diagnósticos Ltda. São Paulo/SP.
j - COULTER Eletronics Ind. e Com. Ltda., Rio de Janeiro/RJ.
k - PROGLOBIN, Prós-Cosmos Ind. e Com. Ltda., São Paulo/SP.
m - AVL AG 900, AVL Biomedical instruments, Switzerland.

REFERÊNCIAS BIBLIOGRÁFICAS

FLAVAHAN, N.A., McGRATH, J.C. Alpha 1 adrenoceptor activation can increase heart rate directly or decrease it indirectly through parasympathetic stimulation. British Journal of Pharmacology, v. 77, p. 319-328, 1982.

RICKETTS, S.W. Clinical experience with domosedan in equine practice in Newmarket. Acta veterinaria
Scandinavica v. 82, n. 1, p. 197-201, 1986.