PRODUÇÃO DE CARNE EM OVINOS DE CINCO GENÓTIPOS.
3. PERDAS E MORFOLOGIA.

MEAT PRODUCTION IN SHEEP OF FIVE GENOTYPES.
3. LOSSES AND MORPHOLOGY

José Carlos Osório¹ Nelson Manzoni de Oliveira²
Ana Paula Nunes³ Juvêncio Luiz Poucey⁴

RESUMO

O estudo foi realizado objetivando quantificar e comparar as perdas e morfologia in vivo e na carcaça, em cordeiros machos castrados (com 30 dias) das raças Merino, Ideal, Corriedale, Romney Marsh e Texel, nascidos e criados em condições extensivas de campo nativo (predominância de Paspalum notatum Figue e Axonopus affinis Chase) até o desmame (10 semanas), no Centro de Pesquisa de Pecuária dos Campos Sulbrasileiros - CPPSUL - EMBRAPA de Bagé, RS, Brasil. A partir do desmame, iniciou-se a suplementação dos cordeiros (200g/cab./dia) com uma ração contendo 17% de proteína bruta e 75% de nutrientes digestíveis totais. Até uma semana pós-

SUMMARY

Fifty (ten per breed) Merino, Polwarth, Corriedale, Romney Marsh and Texel lambs were castrated at 30 days of age and raised up to weaning (ten weeks) on native pasture at the Centro de Pesquisa de Pecuária dos Campos Sulbrasileiros (EMBRAPA), Southern (Bagé, RS) region of Brazil. Following weaning, the animals were fed during one week and each lamb was daily fed with 200 grams of a diet containing 17% of crude protein and 75% of dry matter basis. The animals were then moved to pasture up to 225 days of age when they were slaughtered to quantify and compare in vivo and carcass losses and morphology. Liveweight (with and without a fasting period) was influenced by genotype. However, Merino, Polwarth and Corriedale live weight were not different among themselves, but lower than Romney Marsh lambs, which by their turn, were lower than Texel animals live weight. Fasting losses was significantly affected when compared in absolute numbers (kg), but not percentually. Highest losses were observed in Texel breed lambs.

¹Médico Veterinário, MsC., Doutor, Professor Titular, Bolsista do CNPq, Universidade Federal de Pelotas (UFPe), Faculdade de Agronomia Eliseu Maciel (FAEM), Zootecnia, 96010-900 - Pelotas, RS. Autor para correspondência.

²Médico Veterinário, MsC., PhD., Pesquisador EMBRAPA, Bolsista CNPq, Centro de Pesquisa de Pecuária dos Campos Sulbrasileiros (CPPSUL), Bagé, RS.

³Médico Veterinário, MsC., Professor Substituto UFPe.

⁴Médico Veterinário, MsC., Doutor, Professor Adjunto da UFPe.

Received for publication in 27.01.96. Approved on 12.06.96.
followed by Romney Marsh, whereas Corriedale, Polwarth and Merino did not differ among themselves. Liveweight carcass yield were significantly influenced by genotype. Heavier lambs showed superior carcass yield. Texel animals showed superior in vivo and in the carcass morphology, along with better conformation, body condition and body and carcass capacity, as compared to other breeds.

Key words: sheep, lamb, morphology.

INTRODUÇÃO

Considerando que cada vez é maior a concorrência, é preciso otimizar os processos produtivos. Entre outras coisas, é básico evitar as perdas nos diversos processos de comercialização, ainda mais quando se trata de um alimento rico em proteína como é a carne. Porém, em tudo isso, não somente deve prevalecer o interesse econômico, senão também a obrigação de cubrir as nessesidades básicas nutritivas de uma grande parcela da população brasileira.

No que se refere às perdas de peso vivo por transporte, pode-se dizer, de forma resumida, que são devidas às dejeções, desidratação corporal e perdas na carcaça (KIRTON et al., 1967; KIRTON et al., 1968; BRAZAL & BOCCARD, 1977; OSÓRIO, 1992).

Estas perdas são variáveis, TARRAGO e PEREZ (1971) encontraram perdas entre 4,6% até 6,8% para distâncias inferiores a 110km; enquanto que para uma distância de 400km, com dez horas de transporte, PEREZ (1974) encontrou uma perda de 8,6% no peso vivo.

OSÓRIO et al. (1991) verificaram que a distância percorrida, dos 100 aos 300km, influz e aumenta, em relação direta, sobre as perdas em capões (3,81 a 7,87%), ovelhas (2,29 a 10,01%) e cordeiros (2,24 a 9,45%).

O transporte incorpora uma série de variáveis complexas, como a duração, a época, as condições do mesmo, etc. Por sua vez, as perdas até o sacrifício estão relacionadas com o intervalo entre a última ingestão de alimento e o abate, visto que, além do transporte, o jejum apresenta grande importância. O jejum melhora o rendimento da carcaça e diminui o peso da mesma (BRAZAL & BOCCARD, 1977).

Normalmente, admite-se que, para um jejun de 17 a 18 horas, as perdas variam entre 6 e 8% do peso vivo (SÁNUDO & SIERRA, 1986). Porém, deve-se levar em consideração as condições do jejun. Assim, sem água, para ternoscas de peso vivo de 20-22kg as perdas obtidas por SIERRA (1974) foram de 7,5% e, quando os animais dispunham de água, tais perdas foram menores, entre 5,6 a 6%.

Além das perdas, tanto técnicos como criadores e açougueiros concedem grande importância para a conformação do animal, considerando-a como um dos fatores que melhor permite supor a quantidade e a qualidade da carne existente de um animal. Isto é correto, visto que da morfologia in vivo do animal dependerá seu maior ou menor rendimento de carcaça; porém, uma vez formada a carcaça, o valor da conformação não apresenta a mesma importância (OSÓRIO, 1992).

Entretanto, a conformação é critério de qualidade, porque carcaças bem conformadas adquirem no mercado preços superiores às mal conformadas ou deficientemente conformadas (COLOMER, 1986). Porém, isto não deveria ser assim, já que outros critérios também são importantes, como o acabamento e o peso, de forma que, no mercado espanhol e em outros mediterrâneos, a morfologia da carcaça passa a um segundo plano, sendo que nos nórdues apresenta suma importância (SIERRA, 1986).

O presente estudo objetivou comparar as perdas e morfologia (subjetiva e objetiva) no animal e na carcaça, em cordeiros das raças Merina, Ideal, Corriedale, Romney Marsh e Texel.

MATERIAL E MÉTODOS

O experimento foi realizado no Centro de Pesquisa de Pecuária dos Campos Sulbrasileiros - CPPSUL, da Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA-BAGÉ, RS).

Os animais utilizados foram criados em pastagem nativa com uma loteamento de 0,5 unidade animal por hectare, foram castrados aos 30 dias, desamados aos 70 dias e abatidos aos 225 dias de idade.

Foi tomado o peso vivo pela tarde, às 18:00 horas, e ao abate, em kg, após jejum de 14 horas. A diferença entre o peso vivo pela tarde e ao abate, considerou-se como a perda por jejum em kg, e foi calculada a perda por jejum em % do peso vivo.

Após tomado o peso vivo ao abate, foi avaliada a morfologia in vivo, considerando as seguintes características:

- conformação, subjetiva, atribuindo-se um índice de 1 a 5, com intervalos de 0,5 em 0,5, sendo 1=muito pobre e 5=excelente (OSÓRIO, 1992);
- condição corporal, por palpação das apófises espinhosas, com índice de 1 a 5, com intervalos de 0,5 em 0,5, sendo 1=muito pobre e 5=excelente;

Ciência Rural, v. 26, n. 3 1996.
RESULTADOS E DISCUSSÃO

Foi verificado um efeito do genótipo sobre o peso vivo (com e sem jejum), observando-se que os cordeiros procedentes das raças Merina, Ideal e Corriedale não diferiram entre si e apresentaram pesos inferiores aos cordeiros da raça Romney Marsh, e estes, pesos inferiores aos da raça Texel (Tabela 1). Isto deve-se a que, ao desmame e a partir deste, o crescimento ponderal (aumento de peso em função do tempo) e o desenvolvimento do peso vivo e seus componentes, dos cordeiros Texel e Romney Marsh foram superiores aos dos Corriedale, Ideal e Merino (OLIVEIRA et al., 1996 e OSÓRIO et al. 1996).

A perda por jejum somente apresentou significância estatística em valores absolutos, kg, não diferindo em percentagem. Os cordeiros Texel apresentaram perdas maiores, seguidos dos Romney e, os Corriedale, Ideal e Merino não diferiram entre si. Isto se deve a que cordeiros de maior peso e desenvolvimento, normalmente possuem maior desenvolvimento e conteúdo do aparelho digestivo (RAMALHO-RIBEIRO, 1989 e BURRIN et al., 1990).

Igualmente, foi verificado efeito do genótipo sobre o peso e rendimentos de carcaça, observando-se que os cordeiros com maior peso vivo foram os com carcaças mais pesadas e de superior rendimento; concordando com LLOYD et al. (1980) e KEMP et al. (1981), no que se refere a que maiores pesos vivos ocasionam maior peso de carcaça e aumento no rendimento desta.

Quanto à morfologia "in vivo" e na carcaça, verificou-se que a raça Texel apresentou, em geral, valores superiores a demais raças (Tabela 2); destacando que os cordeiros Texel mostram uma superior conformação, condição corporal e compatibilidade de carcaça devido a seleção para esses caracteres (considerados nas raças de aptidão para carne).

CONCLUSÕES

O peso vivo, perda por jejum em kg, peso e rendimento de carcaça, assim como a morfologia objetiva e subjetiva in vivo são caráteres que dependem do genótipo e devem ser considerados para obtenção de um produto uniforme.

As raças Merina, Ideal e Corriedale apresentam, a igual peso vivo e de carcaça, uma morfologia similar, o que permite a utilização de critérios de avaliação para obtenção de carcaças uniformes nessas três raças e, possivelmente, possam participar de um mesmo grupo comercial.
Tabela 1. Efeito do genótipo sobre o peso vivo (kg), perdas, peso de carcaça quanto (PCQ) e fria (PCF), quebra, rendimento verdadeiro e comercial (%).

<table>
<thead>
<tr>
<th></th>
<th>MERINA</th>
<th>IDEAL</th>
<th>CORRIEDEALE</th>
<th>ROMNEY MARSH</th>
<th>TEXEL</th>
<th>F-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MÉDIA D.P.*</td>
<td>MÉDIA D.P.</td>
<td>MÉDIA D.P.</td>
<td>MÉDIA D.P.</td>
<td>MÉDIA D.P.</td>
<td>Pr>F</td>
</tr>
<tr>
<td>PESO VIVO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sem jejum</td>
<td>21,36±2,09a**</td>
<td>21,93±1,42a</td>
<td>22,09±2,61a</td>
<td>25,08±4,66b</td>
<td>31,20±2,59c</td>
<td>0,0001</td>
</tr>
<tr>
<td>com jejum</td>
<td>20,25±1,91a</td>
<td>20,49±1,14a</td>
<td>20,64±2,48a</td>
<td>23,56±4,01b</td>
<td>29,26±2,24c</td>
<td>0,0001</td>
</tr>
<tr>
<td>PERDA JEJUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>1,11±0,45a</td>
<td>1,44±0,39a</td>
<td>1,45±0,55a</td>
<td>1,51±0,74ab</td>
<td>1,94±0,44 b</td>
<td>0,0189</td>
</tr>
<tr>
<td>%</td>
<td>5,15±1,84</td>
<td>6,51±1,48</td>
<td>6,55±2,50</td>
<td>5,78±2,05</td>
<td>6,17±1,10</td>
<td>0,4191</td>
</tr>
<tr>
<td>PCQ (kg)</td>
<td>8,24±1,05a</td>
<td>8,39±0,76a</td>
<td>8,12±1,16a</td>
<td>9,81±2,14b</td>
<td>12,75±1,40c</td>
<td>0,0001</td>
</tr>
<tr>
<td>PCF (kg)</td>
<td>7,90±1,08a</td>
<td>8,03±0,81ab</td>
<td>7,73±1,20a</td>
<td>9,34±2,15b</td>
<td>12,27±1,42c</td>
<td>0,0001</td>
</tr>
<tr>
<td>QUEBRA (kg)</td>
<td>0,35±0,12</td>
<td>0,36±0,08</td>
<td>0,39±0,08</td>
<td>0,47±0,17</td>
<td>0,48±0,22</td>
<td>0,1380</td>
</tr>
<tr>
<td>QUEBRA (%)</td>
<td>4,33±1,64</td>
<td>4,36±1,33</td>
<td>4,90±1,50</td>
<td>4,98±1,82</td>
<td>3,83±1,85</td>
<td>0,5413</td>
</tr>
<tr>
<td>REND. VER.</td>
<td>40,61±2,08ab</td>
<td>40,90±2,00ab</td>
<td>39,26±1,82a</td>
<td>41,40±2,19b</td>
<td>43,49±1,83c</td>
<td>0,0006</td>
</tr>
<tr>
<td>REND. COM.</td>
<td>38,86±2,38a</td>
<td>39,13±2,22a</td>
<td>37,35±2,07a</td>
<td>39,35±2,51a</td>
<td>41,83±2,14b</td>
<td>0,0001</td>
</tr>
</tbody>
</table>

* D.P. = Desvio Padrão;
**Raças com letras iguais não diferem a 5% de probabilidade pelo DMS.

REFERÊNCIAS BIBLIOGRÁFICAS

Tabela 2. Efeito do genótipo sobre a morfologia "in vivo" e na carcaça, médias e desvios padrão (D.P.). Unidade de medida da conformação e condição corporal "in vivo" = índice de 1 (muito pobre) a 5 (excelente), compacidade=kg/cm, conformação de 1 (má) a 12 (muito boa) e as demais em cm.

<table>
<thead>
<tr>
<th></th>
<th>MERINA</th>
<th>IDEAL</th>
<th>CORRIEDEALE</th>
<th>ROMNEY MARSH</th>
<th>TEXEL</th>
<th>F-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MÉDIA D.P.*</td>
<td>MÉDIA D.P.</td>
<td>MÉDIA D.P.</td>
<td>MÉDIA D.P.</td>
<td>MÉDIA D.P.</td>
<td>Pr>F</td>
</tr>
<tr>
<td>IN VIVO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformação</td>
<td>2,1±0,6a**</td>
<td>2,3±0,5a</td>
<td>2,3±0,7a</td>
<td>2,2±0,7a</td>
<td>3,8±0,4 b</td>
<td>0,0001</td>
</tr>
<tr>
<td>Cond. corporal</td>
<td>2,1±0,4a</td>
<td>2,3±0,5a</td>
<td>2,3±0,7a</td>
<td>2,1±0,5a</td>
<td>3,7±0,4 b</td>
<td>0,0001</td>
</tr>
<tr>
<td>Compr. corp.</td>
<td>52,8±3,5a c</td>
<td>50,8±1,4a</td>
<td>52,3±2,3a c</td>
<td>57,4±6,1b</td>
<td>55,5±4,0 bc</td>
<td>0,0031</td>
</tr>
<tr>
<td>Compr. perna</td>
<td>48,3±1,4a</td>
<td>47,3±1,2a</td>
<td>46,9±2,3a</td>
<td>48,1±2,2a</td>
<td>50,7±3,1 b</td>
<td>0,0031</td>
</tr>
<tr>
<td>Altura (cm)</td>
<td>56,2±2,4a</td>
<td>52,8±2,5 b</td>
<td>54,0±2,6ab</td>
<td>53,3±2,3b</td>
<td>59,4±2,4 c</td>
<td>0,0001</td>
</tr>
<tr>
<td>Perim. toráx.</td>
<td>61,8±3,6a</td>
<td>63,9±2,6ab</td>
<td>62,6±2,4ab</td>
<td>65,1±1,4b</td>
<td>73,4±2,5 c</td>
<td>0,0001</td>
</tr>
<tr>
<td>Comapacidade</td>
<td>0,38±0,03a</td>
<td>0,40±0,02a</td>
<td>0,39±0,04a</td>
<td>0,41±0,03a</td>
<td>0,53±0,03 b</td>
<td>0,0001</td>
</tr>
<tr>
<td>NA CARCAÇA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformação</td>
<td>2,9±1,4abc</td>
<td>3,4±1,7a</td>
<td>1,9±0,3 b</td>
<td>3,6±1,6 c</td>
<td>5,8±2,1 d</td>
<td>0,0001</td>
</tr>
<tr>
<td>Medida k (cm)</td>
<td>50,2±2,2ab</td>
<td>49,6±1,6a</td>
<td>51,1±2,9ab</td>
<td>52,1±2,6 b</td>
<td>52,7±2,1 b</td>
<td>0,0271</td>
</tr>
<tr>
<td>Medida F (cm)</td>
<td>34,3±2,0</td>
<td>33,5±0,9</td>
<td>33,0±1,8</td>
<td>34,1±3,0</td>
<td>35,2±1,8</td>
<td>0,1359</td>
</tr>
<tr>
<td>Medida Th (cm)</td>
<td>23,0±1,3a c</td>
<td>22,5±0,8abc</td>
<td>21,6±1,1 b</td>
<td>23,15±1,4 c</td>
<td>24,9±1,6 d</td>
<td>0,0001</td>
</tr>
<tr>
<td>Profund. perna</td>
<td>11,1±1,6a</td>
<td>11,4±1,2a</td>
<td>11,3±1,5a</td>
<td>12,6±2,2ab</td>
<td>13,5±2,2 b</td>
<td>0,0180</td>
</tr>
<tr>
<td>Comapacidade</td>
<td>0,16±0,02</td>
<td>0,16±0,01ab</td>
<td>0,15±0,02a</td>
<td>0,18±0,04 b</td>
<td>0,23±0,02 c</td>
<td>0,0001</td>
</tr>
</tbody>
</table>

* D.P. = Desvio Padrão;
Raças com letras iguais não diferem a 5% de probabilidade pelo DMS.

Ciência Rural, v. 26, n. 3 1996.
REFERÊNCIAS BIBLIOGRÁFICAS

SIERRA, I. La denominación de origen en el ternasco de Aragón. Información Técnica Económica Agraria (España), v. 66, p. 3-12, 1986.

Ciência Rural, v. 26, n. 3 1996.