COMPORTAMENTO DE *Sternechus subsignatus* (BOHEMAN) EM DEZ ESPÉCIES VEGETAIS DE VERÃO PARA ROTAÇÃO DE CULTURAS OU CULTURA ARMADILHA NO PLANTIO DIRETO

Sternechus subsignatus (BOHEMAN) BEHAVIOUR IN TEN SUMMER ROTATION SPECIES AND TRAPPING CROPS FOR NO-TILLAGE SYSTEM

Mauro Tadeu Braga da Silva¹

RESUMO

O desenvolvimento de *Sternechus subsignatus* (Boheman) (Coleoptera: Curculionidae) foi avaliado em dez espécies vegetais sob condições naturais num solo manejado há três anos no sistema de plantio direto com soja cultivada no verão. Foram observados o número de plantas atacadas, a oviposição, o número e peso de larvas, o número de larvas hibernantes no solo e o número de adultos emergidos. O inseto se reproduziu e desenvolveu em feijão (*Phaseolus vulgaris* L.), guandu anão (*Cajanus cajan* L.), lab-lab (*Dolichos lablab* L.) e soja (*Glycine max* L.) e, ao contrário, em crotalária junceia (*Crotalaria juncea* L.), girassol (*Helianthus annuus* L.), milheto (*Pennisetum americanum* Leek), milho (*Zea mays* L.), mucuna preta (*Sitzolobium aterrimum* Piper et Tracy) e sorgo (*Sorghum bicolor* L.) não completou o ciclo de vida. Os resultados indicaram que a cultura do feijão, guandu anão, lab-lab e soja aumentaram a população do inseto. Entretanto, ocorreu redução na população do inseto com as culturas da crotalária junceia, girassol, milheto, milho, mucuna preta e sorgo. As quatro primeiras espécies são hospedeiras preferenciais, podendo ser usadas como culturas armadilhas e, as demais, não são hospedeiras, pois propiciam a diminuição da população do inseto, sendo ideais para uso em sistemas de rotação de culturas no verão, em áreas infestadas, para substituir o monocultivo da soja em plantio direto.

Palavras-chave: inseto, alimentação, reprodução, culturas, sistema de cultivo.

SUMMARY

The development of *Sternechus subsignatus* (Boheman) (Coleoptera: Curculionidae) was evaluated on ten crop species under natural conditions under no-tillage system for three years and infested with the insect. Soybean was the Summer crop continuously cultivated in the area. Number of attacked plants, oviposition, number and weight of larvae and number of adults emerged were the parameters evaluated. The insect reproduced and developed in bean (*Phaseolus vulgaris* L.), groundnut (*Cajanus cajan* L.), dalichos (*Dolichos lablab* L.) and soybean (*Glycine max* L.) and not in bengal hemp (*Crotalaria juncea* L.), sunflower (*Helianthus annuus* L.), millet (*Pennisetum americanum* Leek), corn (*Zea mays* L.), black velvet bean (*Sitzolobium aterrimum* Piper et Tracy) and sorgum (*Sorghum bicolor* L.) did not complete the life cycle. Results indicated that *P. vulgaris, C. cajan, D. lablab* and *G. max* increased insect population but a reduction was observed on *C. juncea, H. annuus, P. americanum, Z. mays, S. aterrimum* and *S. bicolor*. The first four related species are the preferred hosts and may be used as trap crops. The other six species did not host the insect, decreasing its populations and thus being ideal to be included in Summer crop rotation systems to substitute soybean monocropping under no-tillage.

Key words: insecta, feeding habits, reproduction, crops, tillage system.

INTRODUÇÃO

¹Engenheiro Agônomo, Mestre, Fundação Centro de Experimentação e Pesquisa Fecotrigó (Fundacep), Caixa Postal 10, 98100-970, Cruz Alta, RS.

Recebido para publicação em 27.12.96. Aprovado em 07.05.97
Recently, its infestation in some areas of the traditional cultivation of soybean (RS, SC and PR) is concerning to the farmers, mainly because it is feita a semeadura direta da soja em monocultivo (HOFFMAN-CAMPO et al., 1990; SILVA, 1996).

The insect has a high potential for damage, especially when infestation occurs in the beginning of development of the crop, so that adult larvae feed on plants. Moreover, this control is not satisfactory, as the different applications of insecticides of different spectra of action and in different altitudes in the areas infested and, as a result, the damage is not totally eliminated. The prolonged period of emergence of adult insects, the migration to other areas, the localization of the larvae in the interior of the pasture and the protection of the adult insects in the interior of the foliage results in the difficulty of the toxic insecticides, diminishing the efficiency of the control chemical.

Literature on the insect and the alternatives to reduce its use of insecticides is much more limited, yet it represents a demand for research (HOFFMAN-CAMPO & MAZZARIN, 1989; HOFFMANN-CAMPO et al., 1991; LORINI, 1993; SILVA, 1996).

The use of rotation of cultures or crop armadilla can interrupt the cycle of development of the insect in areas infested, by the lack of food or absence of reproduction (plants not hospedadoras) and by the protection of the insect or chemical in the phases of the plant and larvae (planting of plants). By selecting species of vegetable as alternative of rotation for such species, the first selection, which determines the rotation system of onamopentosa S. subsignatus in the system of directly sown plant.

MATERIALS AND METHODS

The soil where it was planted the experiment was cultivated for over 35 years and, since 1987, it is managed in a system of direct seeding. The analyzes of granulometric and chemical horizon AP (0 - 20 cm) revealed 57% of argilla, silt 22%, clay 21% and 4.4% of organic matter. This soil is classified as Latossolo vermelho escuro distrófico, argilosa, levo ondulado and substrato basalto (Oxisol) (BRASIL, 1973).

O delineamento experimental usado foi o de blocos ao acaso, com quatro repetições. As espécies vegetais avaliadas, com as densidades de sementes e espaçamentos usadas para cada uma delas são apresentadas na Tabela 1. A semeadura foi feita em 18 de novembro de 1990, numa área com infestação natural do inseto do ano anterior. As parcelas foram constituídas por 10 fileiras de 5,0m de comprimento, dispostas uma na frente da outra circundando uma área de milho semeadas em setembro.

De quatro a seis de janeiro de 1991, 100 plantas/repetição foram coletadas e observadas os danos e a presença de ovos e larvas. Das larvas observadas, 12 indivíduos/repetição foram coletados do interior da haste principal para determinação de peso. Contou-se em 15 de julho de 1991 o número de larvas hibernantes, amostrando-se 1,0m x 1,0m x 0,30m de solo/repetição. Determinou-se a emergência dos adultos através de gaiolas de campo, com dimensões de 1,0m x 1,0m x 1,3m, instaladas uma em cada parcela, durante o período de primeiro de novembro de 1991 a 15 de dezembro de 1991.

Os dados foram submetidos a análise de variância, sendo as médias comparadas pelo teste de Duncan a 5% de probabilidade, usando-se o programa estatístico SANEST (ZONTA et al., 1984).

RESULTADOS E DISCUSSÃO

Em parcelas com chance de escolha, os adultos de S. subsignatus estavam presentes nas plantas de crotalaria juncea, feijão, guandu anão, lablab, mucuna preta e soja (até 2 indivíduos/planta de 10 a 31 de dezembro de 1990, nas quais houve infestaça o. Raspam o caule ou haste principal e os peciolo desfiam os tecidos, observando-se 58 plantas de soja com sintomas de ataque, 54 de guandu.

<table>
<thead>
<tr>
<th>Nome comum</th>
<th>Nome científico</th>
<th>Cultivar</th>
<th>Sementes/m</th>
<th>Espaçamento (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crotalaria junci</td>
<td>Crotalaria juncea</td>
<td>Comum</td>
<td>20</td>
<td>0,5</td>
</tr>
<tr>
<td>Feijão preto</td>
<td>Phaseolus vulgaris</td>
<td>Rio Tibagi</td>
<td>10</td>
<td>0,5</td>
</tr>
<tr>
<td>Quandu anão</td>
<td>Cajanus cajan</td>
<td>Comum</td>
<td>18</td>
<td>0,5</td>
</tr>
<tr>
<td>Girassol</td>
<td>Helianthus annuus</td>
<td>Contl Brasil 621</td>
<td>6</td>
<td>0,5</td>
</tr>
<tr>
<td>Lablab</td>
<td>Dolichos lablab</td>
<td>Comum/Rongai</td>
<td>5</td>
<td>0,6</td>
</tr>
<tr>
<td>Milheto</td>
<td>Pennisetum americanum</td>
<td>Comum</td>
<td>20 kg/ha</td>
<td>a lançar</td>
</tr>
<tr>
<td>Milho</td>
<td>Zea mays</td>
<td>CEP 304</td>
<td>6</td>
<td>1,0</td>
</tr>
<tr>
<td>Mucuna preta</td>
<td>Sitzolobium aterrimum</td>
<td>Comum</td>
<td>6</td>
<td>0,5</td>
</tr>
<tr>
<td>Soja</td>
<td>Glycine max</td>
<td>Cobb</td>
<td>20</td>
<td>0,5</td>
</tr>
<tr>
<td>Sorgo</td>
<td>Sorghum bicolor</td>
<td>AG 1017</td>
<td>20</td>
<td>0,5</td>
</tr>
</tbody>
</table>
anão, 53 de feijão, 52 de lab-lab, 9 de crotalária júncea e 8 de mucuna preta (Tabela 2). Por outro lado, os adultos não se alimentaram das plantas de girassol, milheto, milho e sorgo, o que resultou em observações sobre elas.

Verificou-se ovos apenas nas plantas de soja (58 ovos), guandu anão (53), feijão (53) e lab-lab (50) (Tabela 2). Para realizar a postura, a fêmea faz um anelamento na haste principal, cortando toda a casca (epiderme) e, eventualmente, encontrou-se ovos nos ramos laterais e nos pecíolos das folhas. Não ocorreu oviposição em crotalária júncea e mucuna preta, apesar de ter sido observado alimentação. Em girassol, milho, milheto e sorgo, o inseto não se alimentou e tampouco ovipositol (Tabela 2).

Ocorreu eclosão das larvas nas plantas de soja (55 larvas), guandu anão (52), feijão (51) e lab-lab (50) (Tabela 2). Elas apresentam o corpo cilíndrico e levemente curvado, desprovido de patas, com coloração branco-amarelada, enquanto que a cabeça tem cor castanho-escuro. As larvas em alimentação ficam no interior da haste principal, no local do anelamento feito pela fêmea na postura. À medida que se desenvolvem provam um engrossamento, formando uma galha constituída por tecidos ressecados.

Neste local, elas se desenvolveram com ganhos de pesos médios de 0,148mg em guandu anão, 0,117mg em soja, 0,114mg em feijão e 0,099mg em lab-lab (Tabela 2).

Coletou-se 20 larvas hibernantes/m² no solo das parcelas semeadas com soja, 18 com guandu anão, 10 com feijão e 3 com lab-lab (Tabela 2). No final da fase larval, ainda nas plantas, o inseto vai ao solo, onde entra em hibernação, em câmaras localizadas até 20cm de profundidade. Nesta fase as larvas não se alimentam e permanecem na câmara até outubro, quando se transformam em pupas e, em seguida, em adultos.

O inseto completou seu ciclo evolutivo na soja, no guandu anão, no feijão e no lab-lab, com a emergência do solo de 1,5, 1,3, 1,7 e 2 adultos/m², respectivamente (Tabela 2). As diferenças encontradas para larvas hibernantes e adultos emergidos do solo podem ser atribuídas ao número de sementes e ao espaçamento usado para cada cultura (Tabela 1), já que nos demais parâmetros avaliados, com observação de um número de plantas pré-estabelecido e igual para todas as culturas, as diferenças apresentadas seguem a mesma tendência sob o ponto de vista estatístico, embora não tão expressivas em termos de valores absolutos.

A preferência alimentar e reprodutiva, bem como o desenvolvimento do inseto sobre soja, guandu anão, feijão e lab-lab e a não ocorrência de alimentação, oviposição ou desenvolvimento em girassol, milho e sorgo estão de acordo com os resultados obtidos por HOFFMANN-CAMPO & MAZZARIN (1989) e LORINI (1993). No entanto, o desempenho

Tabela 2 - Número de plantas atacadas, oviposição e desenvolvimento de *Sternechus subsignatus* alimentado em diferentes espécies vegetais.

<table>
<thead>
<tr>
<th>Vegetal</th>
<th>Número em 100 plantas observadas</th>
<th>Peso de Larvas (mg)¹</th>
<th>Número de Larvas²</th>
<th>Número de Adultos³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plantas atacadas</td>
<td>Ovos</td>
<td>Larvas</td>
<td>Larvas</td>
</tr>
<tr>
<td>Soja</td>
<td>58a⁴</td>
<td>58a⁴</td>
<td>55a⁴</td>
<td>0,117b⁴</td>
</tr>
<tr>
<td>Guandu anão</td>
<td>54 b</td>
<td>53 b</td>
<td>52 b</td>
<td>0,148a</td>
</tr>
<tr>
<td>Feijão</td>
<td>53 bc</td>
<td>53 b</td>
<td>52 b</td>
<td>0,114 c</td>
</tr>
<tr>
<td>Lab-Lab</td>
<td>52 c</td>
<td>50 c</td>
<td>50 c</td>
<td>0,099 d</td>
</tr>
<tr>
<td>Crotalária júncea</td>
<td>9 d</td>
<td>0 e</td>
<td>0 e</td>
<td>0 e</td>
</tr>
<tr>
<td>Mucuna preta</td>
<td>8 d</td>
<td>0 e</td>
<td>0 e</td>
<td>0 e</td>
</tr>
<tr>
<td>Girassol</td>
<td>0 e</td>
<td>0 e</td>
<td>0 e</td>
<td>0 e</td>
</tr>
<tr>
<td>Milho</td>
<td>0 e</td>
<td>0 e</td>
<td>0 e</td>
<td>0 e</td>
</tr>
<tr>
<td>Milheto</td>
<td>0 e</td>
<td>0 e</td>
<td>0 e</td>
<td>0 e</td>
</tr>
<tr>
<td>Sorgo</td>
<td>0 e</td>
<td>0 e</td>
<td>0 e</td>
<td>0 e</td>
</tr>
</tbody>
</table>

C.V (%) | 4,9 | 3,8 | 5,3 | 9,4 | 16,4 | 19,1

¹ Média de 12 indivíduos/repetição
² Amostrou-se 1,0m x 1,0m x 0,30 de solo ou 1m² de superfície/repetição
³ Galôs de 1,0m x 1,0m x 1,3m, uma galôa ou 1m² de superfície/repetição
⁴ Valores médios seguidos da mesma letra, na coluna, não diferem significativamente pelo teste de Duncan (P<0,05).
do inseto sobre guandu é função do genótipo desta leguminosa, pois HOFFMANN-CAMPO et al. (1991) observaram apenas alimentação e postura nos genótipos IAPAR - 43, PPPI 1264 e PPPI 265, enquanto que no genótipo PPPI 832 também ocorreu desenvolvimento de larvas. Apenas o hábito de alimentação em crotalária júnea e mucuna preta também foi evidenciado por HOFFMANN-CAMPO & MAZZARIN (1989), mas é discordante de HOFFMANN-CAMPO et al. (1991) e LORINI (1993), onde o inseto não se alimentou e tampouco ovipositou. Quanto a milho, onde não foi observada alimentação, oviposição e desenvolvimento do inseto, nenhuma informação foi encontrada na literatura. Assim, a soja, o guandú anão, o feijão e o lab-lab podem propiciar aumento da população do inseto. Essas culturas não devem ser repetidas em áreas tradicionalmente infestadas ou usadas apenas como cultura armadilha (através de alimentação e oviposição), onde os adultos poderão ser eliminados quimicamente com inseticidas, antes das fêmeas iniciarem a postura, e ovos e larvas eliminados mecanicamente com roçadeiras, antes das primeiras larvas irem ao solo para hibernação. As demais (crotalária júnea, girassol, milho, milheto, mucuna preta e sorgo) podem representar alternativas viáveis de rotação de culturas para substituir a soja durante a safra de verão, por propiciar a diminuição da população de *S. subsignatus* e serem espécies de valor econômico.

Nesta linha de pesquisa, SILVA (1996) concluiu que a rotação de culturas com plantas não hospedeiras, no caso milho, interrompe o ciclo do inseto pela falta de alimento, o que permitiu produtividade satisfatória das plantas de soja no verão seguinte, na mesma área. O uso de cultura armadilha é mencionado como um método de grande potencialidade para reduzir populações de *Anthonomus grandis* (Boheman) em algodão (ISELY, 1934; SCOTT et al., 1974; PIETERS, 1976) e de percevejos em soja (PANIZZI, 1980). Esta técnica consiste na semeadura, antecipada ou não, em áreas marginais da lavoura, de algumas fileiras das plantas hospedeiras preferenciais, para atrair o inseto-praga e posteriormente eliminá-lo com métodos químico ou mecânico, restringindo a essas áreas de atuação.

CONCLUSÃO

As plantas de soja, guandú anão, feijão e lab-lab são hospedeiras de *S. subsignatus* e permitem o aumento da população, sendo indicadas apenas para uso como culturas armadilhas, atraindo o inseto adulto para oviposição; as plantas de crotalária júnea, girassol, milho, milheto, mucuna preta e sorgo não são hospedeiras de *S. subsignatus* e propiciam a diminuição da sua população, representando alternativas para uso em sistemas de rotação de culturas.

AGRADECIMENTOS

O autor agradece ao Clube Amigos da Terra (CAT) de Cruz Alta, pelo aporte financeiro, e aos funcionários Claudio de Oliveira e Luis A. S. Ferreira, pelo auxílio nas atividades de campo.

REFERÊNCIAS BIBLIOGRÁFICAS

Ciência Rural, v. 27, n. 4, 1997.