ABSTRACT

Among the parasitic diseases, Canine Visceral Leishmaniasis (CVL) is included in the systemic illnesses of chronic evolution that attack men and dogs, presenting varied clinical manifestations as cachexia, dermatologic lesions, peripheral lymphadenopathies, besides the ocular lesions. This work report the case of a dog clinically suspected of having CVL, presenting skin lesions, cachexia, grifosis, and ocular signs of uveitis. The parasitological diagnosis was accomplished for Canine Leishmaniasis through the visualization of amastigote forms of Leishmania chagasi in smears of bone marrow fluid aspirate, of non-lesioned, and lesioned skin. Alterations in the ocular structures are characterized mainly by mononuclear-plasmocitic infiltrate.

Key words: uveitis, Leishmania sp, dog.

INTRODUCTION

The uveitis, which is defined as the inflammation of the uveal tract, is a component of most of the intraocular diseases. Its highly vascular nature and proximity with other intraocular structures make it a commonly found disease (COLLINS & MOORE, 2003).

The ocular and histopathological alterations resulting from the CVL may affect the anterior and posterior segments of the eye (PUCHOL &
The histopathological findings, in different degrees of intensity, are characterized by the infiltrate of inflammatory cells affecting several intraocular structures (MOLLEDA et al., 1993).

CASE REPORT

The authors report a case of a 5-year-old male Rhodesian ridgeback dog assisted at the Veterinary Hospital of Veterinary College, Federal Rural University of Pernambuco clinically suspected as having CVL originating from the city of Olinda in Pernambuco state. When examined, the animal presented gryphosis, cachexia, ulcerated skin lesions and anterior uveitis.

RESULTS AND DISCUSSION

The clinical diagnosis can be established based on the ocular signs, as ocular discharge, conjunctival hyperemia, chemosis and congested episcleral vessels (Figure 1), as it has been indicated by COLLINS & MOORE (2003). The parasitological diagnosis was accomplished through the visualization of amastigote forms of *Leishmania sp* in smears of bone marrow fluid aspirate (Figure 2), and of non-lesioned, and lesioned skin. Due to the precarious clinical conditions and very unfavourable prognosis, the patient was sacrificed, and the eyes and adnexa were histopathologically evaluated.

On the third eyelid, the conjunctive tissue showed areas of mononuclear-plasmocytic infiltrate. Below the conjunctive, scaly metaplasia, which in some areas tried to surround groups of inflammatory cells, was observed. The third eyelid conjunctival epithelium presented scaly metaplasia, hyperplasy of the calciform cells, and mononuclear-plasmocitic subepithelial infiltrate (Figure 3). From the findings, only the inflammatory exsudation was similar to the reported by MOLLEDA et al. (1993). On the cornea, the separation of collagenous fibers was observed characterizing edema. Low quantity of plasmocites was observed. The anterior epithelium was hyperplastic with the subjacent conjunctival stroma and the Descemet Membrane thickened. The sclera showed areas with mononuclear-plasmocitic infiltrate (Figure 3). In the ciliary body and in the iris conjunctive edema with mononuclear-plasmocitic infiltrate and vascular dilatation of the lymphatic vessels and veins was

Figure 1 - Photographic image of dog eye with Leishmaniasis showing congested episcleral vessels, ocular discharge, anterior conjunctival and uveal hyperemia, parasitologically positive for *Leishmania chagasi*.

Ciência Rural, v.34, n.3, mai-jun, 2004.
Figure 2 – A - Photomicrographic image of amastigote forms of Leishmania sp (arrow) parasitizing macrophages, in smears of bone marrow fluid aspirate, stained Panotic. 1000x. B - Photomicrographic image of calciform cells hyperplasy with scaly metaplasia and mononuclear-plasmocitic subepithelial infiltrate conjunctive of the third eyelid. H&E. 400x.
Figure 3 – A - Photomicrographic image of infiltrate showing cell of the mononuclear fagocitic system and plasmocites of the cornea. B - Photomicrographic image of conjunctival edema and lymphatic vessels dilatation (arrow) of the iris. H&E. 400x.
observed, as it has been shown by GARCIA ALONSO et al. (1996), except for the conjunctive edema.

CONCLUSIONS

The observations ratify the obligation of including the disease in the differential diagnosis of other infectious diseases potentially able of causing uveitis.

REFERENCES

