Helminth fauna of bovines from the Central-Western region, Minas Gerais State, Brazil

Fauna helmintológica de bovinos da região Centro-oeste do Estado de Minas Gerais, Brasil

ABSTRACT

Seventy-six naturally infected bovines, males and females of mixed breed, aged 8 to 12 months-old, were necropsied. The results of necropsy revealed the presence of 9 helminth genera and 16 species, with the following prevalence and mean infection intensity:

- *Haemonchus placei* (100.0%; 3895.5)
- *Haemonchus similis* (29.0%; 159.6)
- *Cooperia punctata* (100.0%; 5595.0)
- *Cooperia spatulata* (32.9%; 137.8)
- *Cooperia pectinata* (34.2%; 1010.5)
- *Trichostrongylus axei* (69.7%; 239.2)
- *Trichostrongylus colubriformis* (10.5%; 10.8)
- *Trichostrongylus longyspicularis* (2.6%; 0.5)
- *Ostertagia ostertagi* (2.6%; 0.3)
- *Ostertagia lyrata* (2.6%; 1.5)
- *Ostertagia trifurcata* (3.3%; 0.3)
- *Oesophagostomum radiatum* (94.7%; 470.9)
- *Trichuris discolor* (47.4%; 32.5)
- *Strongyloides papillosus* (1.3%; 0.1)
- *Capillaria bovis* (9.2%; 1.0)
- *Bunostomum phlebotomum* (2.6%; 0.3)
- *Trichostrongylus longyspicularis* (2.6%; 0.3)
- *Ostertagia ostertagi* (2.6%; 3.1)
- *Ostertagia lyrata* (2.6%; 1.5)
- *Ostertagia trifurcata* (1.3%; 0.3)
- *Oesophagostomum radiatum* (94.7%; 470.9)
- *Trichuris discolor* (47.4%; 32.5)
- *Strongyloides papillosus* (1.3%; 0.1)
- *Capillaria bovis* (9.2%; 1.0)
- *Bunostomum phlebotomum* (2.6%; 0.3). A mean parasitic load was 11,558.5 helminths per bovine. Of the 76 necropsied bovines, 92.1% were infected by 3 to 7 helminth species. Only 7.9% of hosts were parasitized by 8 different helminth species. This study includes the first report of the species *Ostertagia lyrata* and *Ostertagia trifurcata* in Minas Gerais state. It should be emphasized that while identifying the helminths collected during necropsy in the present work, observation revealed that an inversion in the mean parasitic intensity is occurring, showing diminishing numbers of *Cooperia* and an increase in *Haemonchus* compared to the values reported in the literature.

Key words: prevalence, gastrointestinal nematodes, bovine.

INTRODUCTION

Infections by gastrointestinal nematodes in ruminants cause extensive economic losses resulting

1Departamento de Patologia Animal, Centro de Pesquisa em Sanidade Animal, (CPPAR), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista (UNESP), Rua de acesso Prof. Paulo Donatto Castellane, s/n, 14884-900, Jaboticabal, SP, Brasil. E-mail: rabelo.vet@hotmail.com. Autor para correspondência.

Received 07.17.09 Approved 11.28.09
from mortality and morbidity, characterized by diminished productivity in these animals (LIMA & GUIMARÃES, 1992). Gastrointestinal verminosis, identified as one of the principal factors that spoils meat production, acts in a subclinical form in extensively bred beef cattle, damaging the development of the breeding and rebreeding phases and reducing resistance to infections caused by bacteria and viruses.

The control of these parasites is principally based on treating cattle with anthelmintics; however, this practice is not always effective due to the ever more frequent appearance of resistant helminth populations (SOUTELLO et al., 2003). A system of sanitary and zootechnical management, associated with epidemiological studies, could minimize the use of endectocides.

Antiparasitic control should be based on knowledge of the helminth species present in bovine from the region, as well as their epidemiology. With this objective, numerous studies to establish infection indicators in Brazil have been realized in the southwestern region by LANDIM et al. (2001); central-western region by CATTO & UENO (1981); southern region by SANTOS et al. (1994); and the northeastern region by LEAL et al. (1999).

In Minas Gerais State, existing studies concerning the helminth fauna, epidemiology, pathogenesis and helminth control in bovine herds are scarce and fragmented, with an absence of data concerning such knowledge in the majority of the micro-regions (MELO & RIBEIRO, 1977). The objective of this study was to determine the occurrence of gastrointestinal nematode in bovine from the Formiga micro-region in the central-western region of Minas Gerais State, Brazil.

RESULTS AND DISCUSSION

The results of necropsy revealed the presence of nine helminth genera and 16 species, with the prevalence and mean infection intensity (Table 1).

The mean parasitic load was 11,558.5 helminths per bovine. Identification of the helminths collected at necropsy revealed that *Haemonchus* and *Cooperia* corresponded to 35.1% and 58.3% of the mean parasitic load, respectively, and that *Haemonchus placei* and *Cooperia punctata* were the most frequently observed species. The percentage distribution of cases of registered infection according to the number of helminth species present in the same host is shown in table 2. Analysis of table 2 showed that 92.1% of the bovine were infected by three to seven helminth species. Only 7.9% of hosts were parasitized by eight different helminth species in their digestive tract.
Similar to that observed by OLIVEIRA (1988) and OLIVEIRA & MATSUMOTO (1985), the species with the greatest prevalences were *Haemonchus placei* (100.0%) and *Cooperia punctata* (100.0%), followed by *Oesophagostomum radiatum* (94.7%). However, this result is in disagreement with that reported by other authors in the State of São Paulo (LANDIM et al., 2001) and the remaining regions of the country (BIANCHIN et al., 1996; LEAL et al., 1999). It should be noted that the greater infection intensity presented by *Cooperia* spp (58.3%) in relation to *Haemonchus* spp (35.1%), is similar to results previously reported by the authors cited above. However, in the present work, analysis of the results determined that a reduction occurred in the total number of *Cooperia*, while the number of *Haemonchus* increased.

The prevalence of *O. radiatum* was high (94.7%), with a mean infection intensity of 470.9, though this was lower than both *Cooperia* spp and *Haemonchus* spp. LANDIM et al. (2001) indicated this large intestine nematode as the second most prevalent in the northeastern region of the State of São Paulo, as did MELO & RIBEIRO (1977) in the State of Mato Grosso do Sul.

For the genus *Trichostrongylus* spp, a mean of 250.5 parasites were recovered, representing only 2.2% of the total parasitic load, with the following species: *T. axei*, *T. colubriformis* and *T. longyspicularis*, showing a prevalence of 69.7%, 10.5% and 2.6%, respectively. This result is in agreement with those obtained by DUARTE et al. (1982) and OLIVEIRA & MATSUMOTO (1985). According to ROBERTS et al. (1952) and LEE et al. (1960), high temperatures negatively influence the preinfective states of these species; a fact confirmed by SANTOS et al. (1994), who determined that *Trichostrongylus* spp. was the most prevalent genus in São Francisco de Paula, Rio Grande do Sul State, in the coolest region of the country. For this reason, *O. ostertagi*, *O. lyrata* and *O. trifurcata* presented low prevalences (2.6%, 2.6% and 1.3%, respectively) and mean infection intensities (3.1, 1.5 and 0.3, respectively).

Table 2 - Percentage distribution of the cases of registered infection, according to the number of helminth species present in the same host of the Formiga micro-region, MG, Brazil.

<table>
<thead>
<tr>
<th>Number of species</th>
<th>Quantity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>11.8</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>14.5</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>26.3</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>23.7</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>15.8</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>7.9</td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 1 - Prevalence, mean intensity and total amplitude of the variation in infection by helminths in bovine of the Formiga micro-region, MG, Brazil.

<table>
<thead>
<tr>
<th>Helmint species</th>
<th>Prevalence</th>
<th>Mean (species)</th>
<th>Mean (genera)</th>
<th>Percentage (genera)</th>
<th>Amplitude of variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemonchus placei</td>
<td>100.00</td>
<td>3895.50</td>
<td>4055.08</td>
<td>35.0832</td>
<td>85 - 24327</td>
</tr>
<tr>
<td>Haemonchus similis</td>
<td>28.95</td>
<td>159.58</td>
<td>85.5 - 5251</td>
<td>60 - 3191</td>
<td></td>
</tr>
<tr>
<td>Trichostrongylus axei</td>
<td>69.74</td>
<td>239.22</td>
<td>0</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>Trichostrongylus colubriformis</td>
<td>10.53</td>
<td>10.79</td>
<td>250.54</td>
<td>2.1676</td>
<td></td>
</tr>
<tr>
<td>Trichostrongylus longyspicularis</td>
<td>2.63</td>
<td>0.53</td>
<td>0</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Cooperia punctata</td>
<td>100.00</td>
<td>5594.95</td>
<td>10 - 35534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooperia spatulata</td>
<td>32.89</td>
<td>137.83</td>
<td>6743.32</td>
<td>58.3410</td>
<td></td>
</tr>
<tr>
<td>Cooperia pectinata</td>
<td>34.21</td>
<td>1010.54</td>
<td>0</td>
<td>69758</td>
<td></td>
</tr>
<tr>
<td>Ostertagia ostertagi</td>
<td>2.63</td>
<td>3.12</td>
<td>0</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Ostertagia lyrata</td>
<td>2.63</td>
<td>1.47</td>
<td>4.86</td>
<td>0.0420</td>
<td></td>
</tr>
<tr>
<td>Ostertagia trifurcata</td>
<td>1.32</td>
<td>0.26</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Oesophagostomum radiatum</td>
<td>94.74</td>
<td>470.89</td>
<td>470.89</td>
<td>4.0740</td>
<td></td>
</tr>
<tr>
<td>Tricharis discolor</td>
<td>47.37</td>
<td>32.51</td>
<td>32.51</td>
<td>0.2831</td>
<td></td>
</tr>
<tr>
<td>Strongyloides papillosus</td>
<td>1.32</td>
<td>0.07</td>
<td>0.07</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>Capillaria bovis</td>
<td>9.21</td>
<td>0.93</td>
<td>0.93</td>
<td>0.0081</td>
<td></td>
</tr>
<tr>
<td>Bunostomum phlebotomum</td>
<td>2.63</td>
<td>0.26</td>
<td>0.26</td>
<td>0.0023</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>11558.46</td>
<td>11558.46</td>
<td>100.00</td>
<td>500 - 87025</td>
</tr>
</tbody>
</table>

Table 2 - Percentage distribution of the cases of registered infection, according to the number of helminth species present in the same host of the Formiga micro-region, MG, Brazil.
This study is the first report of the species *O. lyrata* and *O. trifurcata* parasitizing in Minas Gerais State. The species *Trichuris discolor* presented a prevalence of 47.4% a result greater than that obtained by OLIVEIRA & MATSUMOTO (1985) in the region of São Carlos, SP; by DUARTE et al. (1982) in Cantagalo, RJ; and by CARNEIRO & FREITAS (1977) in Goiás, though lower than the prevalence (79.3%) obtained in Minas Gerais by COSTA et al. (1970).

The low prevalences of *S. papillosus* (1.3%) and *B. phlebotomum* (2.6%) could be associated with the age range of the necropsied bovines, 8 to twelve months-old, since from five months of age onwards, bovines begin to present resistance to these species (ROBERTS et al., 1952; VEGORS, 1954; COSTA et al., 1979).

CONCLUSIONS

Based on the results obtained in the present work, it can be concluded that the two most abundant helminth genera in the Formiga micro-region in Minas Gerais State and in the 76 parasitological necropsies were *Cooperia* (58.3%) and *Haemonchus* (35.1%). Moreover, it is important to highlight that an inversion in the mean parasitic intensity was observed in the present study, showing diminishing numbers of *Cooperia* and an increase in *Haemonchus* in comparison with reports in the literature (BIACHIN et al., 1996). *Ostertagia lyrata* and *Ostertagia trifurcata* are described parasitizing bovine in the Minas Gerais state for the first time.

REFERENCES

