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ABSTRACT 

Microbial control of insects is based on the rational 
use of pathogens to maintain environmentally balanced pest 
population levels, and Metarhizium anisopliae has been the 
most studied and most utilized fungal species for that purpose. 
The natural genetic variability of entomopathogenic fungi is 
considered one of the principal advantages of microbial insect 
control. The inter- and intraspecifi c variability and the genetic 
diversity and population structures of Metarhizium and other 
entomopathogenic fungi have been examined using ITS-RFLP, 
ISSR, and ISSP molecular markers. The persistence of M. 
anisopliae in the soil and its possible effects on the structures of 
resident microbial communities must be considered when selecting 
isolates for biological insect control. 
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RESUMO

O controle microbiano consiste na utilização 
racional de patógenos, visando à manutenção da população de 
insetos em equilíbrio no ambiente. Metarhizium anisopliae é a 
espécie mais estudada e utilizada no controle biológico de insetos. 
A variabilidade genética dos fungos entomopatogênicos pode ser 
considerada uma das principais vantagens no controle microbiano 
de insetos e pode ser detectada por meio de marcadores 
moleculares, como ITS-RFLP, ISSR e ISSP. Esses marcadores 
são usados para a caracterização inter e intraespecífi ca de 
Metarhizium e outros fungos entomopatogênicos e poderão 
auxiliar na compreensão da diversidade genética e da estrutura 
das populações destes fungos. A persistência de M. anisopliae no 
solo e seu possível efeito na estrutura da comunidade microbiana 
deste solo são características importantes e pouco estudadas, que 
devem ser consideradas no processo de seleção de isolados para o 
controle biológico de insetos.

Palavras-chave: controle biológico, Metarhizium anisopliae, 
marcadores moleculares.

INTRODUCTION 

Biological control consists of the 
introduction of benefi cial predatory or parasitic 
species into cultivation systems where they were 
previously absent or present only at low population 
levels. This technique is designed to negatively 
affect specifi c target species that could otherwise 
become pests or infectious agents (GLIESSMAN, 
2001). Susceptibility to pests is a general refl ection 
of plant health, which can be negatively infl uenced 
by poor soil fertility management (NICHOLLS & 
ALTIERI, 2007). One of the objectives of biological 
control is to assure that the benefi cial organism to 
be introduced can complete its lifecycle at the site, 
and then reproduce with suffi cient effi ciency to 
become a permanent resident of the agrosystem. 
Frequently, however, the niche conditions available 
to the benefi cial introduced organism do not 
fully satisfy its long-term needs, requiring its 
reintroduction (GLIESSMAN, 2001). Changes in 
production practices and the use of agricultural 
additives are often necessary for biological control 
to be successful. Integrated Pest Management (IPM) 
is an alternative to unilateral intervention strategies 
using agrochemicals, with a wider focus on the 
ecology of the insect pests as well as the crop plants, 
based on the use of complementary tactics and the 
adoption of cultivation techniques that favor plant 
diversity. Pest control in this type of approach is 
initially based on natural agents such as pathogens, 
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parasites and predators, with the use of agrotoxins 
being contemplated only as a last resort. However, as 
biological pest control methods do not demonstrate 
immediate results in agro-industrial systems with 
large-scale production and commercialization goals 
(as agrotoxins), commercial groups tend to avoid 
the costs and labor related to their development 
and perfection. Nonetheless, growing energy costs, 
environmental degradation, and infl ation all reinforce 
the argument that immediate fi nancial gains should 
not be the principal motivating force in agricultural 
production (ALTIERI, 2002). In spite of the strong 
economic pressure on agricultural production, many 
farmers are making the transition to practices that are 
more environmentally friendly and have the potential 
to contribute to long-term agricultural sustainability 
with biological control being one of th  e principal tools 
in this conversion process (GLIESSMAN, 2001).

Microbial control is an aspect of biological 
insect control and consists of the rational use of 
pathogens to maintain pest balances in agricultural 
environments, with increases in the numbers of 
other natural enemies often being observed in 
fi elds where microbial control has been used. 
Successful programs of microbial control using 
entomopathogenic fungi to combat arthropod pests in 
soils and aquatic environments have been developed, 
principally utilizing the genera Metarhizium, 
Beauveria, Sporothrix, Lecanicillium, Nomuraea, 
Hirsutella, Aschersonia, Isaria, Paecilomyces, and 
Enthomophthora (ALVES & LOPES, 2008). Species 
within the genus Metarhizium are pathogenic fungi 
having broad ranges of insect hosts. M. anisopliae 
was found to be a species complex composed of nine 
species based on multilocus phylogeny (BISCHOFF 
et al., 2009). The objective of this study was to analyze 
some morphological, molecular and ecological 
aspects of M. anisopliae.

Metarhizium anisopliae
Metarhizium anisopliae, a anamorphic 

fungus which belong to the phylum Ascomycota, 
is the most intensively studied species of the genus 
Metarhizium, considering that the teleomorph 
Cordyceps brittlebankisoides [= Metacordyceps 
brittlebankisoides (Liu, Liang, Whalley, Yao & Liu) 
Sung, Sung, Hywel-Jones & Spatafora] was isolated 
from insect larva (Coleoptera: Scarabaeidae) and 
identifi ed as M. anisopliae var. majus [= M. majus 
(Johnston) Bischoff, Rehner & Humber] (LIU et al., 
2001). The reproductive structures of M. anisopliae 
(the anamorph, the most commonly encountered form) 
comprise conidiophores and conidia. Leveduriform 

structures or blastospores and appressoria are produced 
by M. anisopliae through mycelial differentiation. 
Blastospores can function in certain cases as 
reproductive units and are produced in submerged 
cultures (JACKSON & JARONSKI, 2009) and in 
the hemolymph of insect hosts (ALVES, 1998). The 
appressoria, formed at the extremity of the hyphae, 
may be involved in fungus pathogenicity and have 
the function of initiating epicuticular and procuticle 
penetration of the insect tegument (ALVES, 1998). 
The production of microsclerotia by isolates of M. 
anisopliae has been observed after cultivation in liquid 
media with different concentrations of carbon and 
carbon-nitrogen (JACKSON & JARONSKI, 2009).

The fungal-host relationship occurs 
through the adhesion and germination of conidia 
on the surface of the insect, followed by hyphae 
penetration through the cuticle. The process of host 
colonization initiates after penetration, with the 
penetrating hyphae becoming thicker and ramify 
within the tegument and the hemocoel of the insect, 
forming blastospores. The hyphae continue to grow 
and invade various internal organs after the death of 
the host and will subsequently emerge from the insect 
body and produce conidia that disseminate and infect 
other individuals (ALVES, 1998).

Molecular studies of the processes of 
host infection have shown them to be complex and 
multifactorial. The adhesion and penetration steps 
have been most closely examined and appear to be 
decisive to infection. The participation of an adhesin 
coded by the gene Mad1 in the adhesion of conidia 
to the cuticle of Manduca sexta Linnaeus larva was 
demonstrated using mutants in which this gene was 
deleted, with these mutants demonstrating signifi cant 
decreases in conidial germination, suppression of 
the formation of blastospores, and reduced virulence 
(WANG & St. LEGER, 2007a). COSENTINO-
GOMES et al. (2013) described that the inhibition of 
phosphatase activity in the conidia of M. anisopliae 
reduced adhesion to the integument of Dysdercus 
peruvianus (Hemiptera: Pyrrhocoridae) and 
(indirectly) its infection. 

The participation of perilipin (proteins 
that surround lipidic droplets in the cell interior) 
in appressoria differentiation in M. anisopliae has 
also been reported. The deactivation of the Mpl1 
gene in some strains generates defi ciencies in the 
infection process due to the formation of appressoria 
with lower concentrations of lipidic droplets and 
resultantly lower levels of osmotic pressure - resulting 
in diffi culties in terms of hyphal penetration (WANG 
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& St. LEGER, 2007b). Defective appressoria were 
also observed after the deletion of the mapka1 gene 
(catalytic subunit 1 of the protein kinase A) (FANG 
et al., 2009). Subtilisin-type proteases have been 
intensively studied in penetration processes, and 10 
genes are known to code for different isoforms of 
these enzymes (Pr1A - Pr1J) and appear to refl ect 
specifi city in relation to different hosts (BAGGA et 
al., 2004). MOS1 is another protein with an apparent 
role in the adaptation of fungi to the high osmotic 
pressure encountered in insect hemolymph (WANG 
et al., 2008). Other genes, such as Mcl1 (collagen-
like protein), Cag8 (which regulates the G protein 
signaling pathway), chi2 (endochitinase), chi3 (endo- 
and exochitinase), and Mpk1 (phosphoketolase) are 
known to be involved in the host infection processes 
of M. anisopliae, with reductions in virulence if they 
are inactivated (FANG et al., 2007; BOLDO et al., 
2009; DUAN et al., 2009). SU et al. (2013) undertook 
comparative proteomic analyses of the conidia and 
mycelia of M. anisopliae (Ma1291). The proteins 
identifi ed as exclusive to the conidia were involved 
in protective processes, appressorium formation, 
and the degradation of the host cuticle and exclusive 
proteins to mycelia were involved in biosynthetic and 
energy-generating metabolic processes, such as UTP-
glucose-1-phosphate uridylyltransferase and heat-
shock protein 70.

Molecular characterization  
Molecular markers can represent the 

phenotype of an expressed gene or a DNA segment 
corresponding to a non-expressed region of the 
genome. Advances in molecular biology have 
resulted in the development of various methods for 
detecting genetic polymorphism at the DNA level 
and have aided our understanding of genetic diversity 
and the population structures of fungi populations 
(FALEIRO, 2007).

The polymerase chain reaction (PCR) 
technique, allied to methodologies of cloning and DNA 
sequencing, have allowed the rapid accumulation 
of information relating to genome structure and the 
discovery of repetitive DNA sequences (which are 
rich sources of genetic polymorphism). A number 
of methodologies have been described for analyzing 
polymorphisms based on PCR, including ITS-RFLP 
(Internal Transcribed Spacer - Restriction Fragment 
Length Polymorphism), ISSP (Intron Splice Site 
Primer), ISSR (Inter Simple Sequence Repeats), and 
SSR (Simple Sequence repeats) (FALEIRO, 2007).

The DNAs coding for rRNA are arranged 
as genetic aggregates with three genetically conserved 

regions composed of 18S, 5.8S and 28S genes that are 
transcribed and processed to generate mature rRNA, 
but are separated by variable intergenic spacer regions 
denominated ITS1 and ITS2. The genetic aggregate 
that codes for rRNA appears to be repeated hundreds 
of times in the fungus genome and demonstrates 
both highly conserved and variable regions, allowing 
scientists to analyze variations at different taxonomic 
levels. The 18S region is the most highly conserved, 
and is therefore only used in comparisons between 
distantly related organisms. The 28S region is more 
variable and therefore appropriate for comparing 
different genera (or different species, in some cases). 
ITS regions evolve relatively rapidly and can be used 
to distinguish closely related species or even varieties 
within the same species (FUNGARO, 2000).

DNA samples digested with restriction 
enzymes (RFLP) can identify polymorphisms based 
on the numbers and sizes of the fragments produced, 
which allows the differentiation of species and 
isolates of Metarhizium based on the presence or 
absence of rDNA restriction sites (PIPE et al., 1995). 
In the present study, isolates of M. anisopliae could 
be grouped according to their geographical origins, 
although no signifi cant correlations were observed 
in terms of their hosts. VELÁSQUEZ et al. (2007) 
observed that there were no associations between the 
diversity of isolates of M. anisopliae from different 
regions in Chile and their geographic origins. ITS-
RFLP was used to defi ne specifi c primers that could 
be used to detect and identify M. anisopliae var. 
anisopliae (DESTÉFANO et al., 2004).

Eukaryotic chromosomes contain genes 
that are separated by non-coding regions (introns) as 
well as regions with coding information represented 
by proteins (exons). Introns can be separated into 
four basic categories according to their structural 
characteristics and self-splicing mechanisms: group I, 
II, nuclear pre-mRNA, and nuclear tRNA. The introns 
of groups I and II are classifi ed according to their 
internal organizations and have the intrinsic capacity 
of self-splicing; the latter two intron groups can be 
used as molecular markers in intra- and interspecifi c 
studies of diversity (HAUGEN et al., 2005). 

Group I introns are encountered in 
eukaryotic organisms such as fungi, protists, and 
green algae in nuclear, mitochondrial, and chloroplast 
genomes. Group I introns are encountered in the 
eukaryotic nuclear genome in rDNA genes at specifi c 
sites that code for the larger and smaller rRNA 
subunits. These introns are autonomous genetic 
elements characterized by their capacity to transfer 
from one allele to another (as some are mobile 
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elements – transposons) and by their ability to self-
splice from RNA transcripts (HAUGEN et al., 2005). 
Group I introns are generally irregularly distributed 
– being present in some isolates but absent in others 
– and thus can serve as markers of genetic variability. 
Genetic diversity among M. anisopliae isolates have 
been observed in studies of genes associated with 
the largest ribosomal subunit and with four insertion 
sites of group I introns, and the presence/absence of 
these introns allow the delimitation of seven groups 
(MÁRQUEZ et al., 2006). 

Microsatellite DNAs show numerous 
short, repeated, tandem sequences, and their analyses 
involve replicating fragments containing those 
repetitions through the use of oligonucleotides that 
bind to the regions which fl ank them (SSR sites). 
These markers were used to examine polymorphism 
in M. anisopliae, but the primers used to examine 
samples derived from soil cores from different 
regions in Chile (VELÁSQUEZ et al., 2007) and 
numerous countries in Asia and Europe (FREED et 
al., 2010) were not effi cient in detecting informative 
polymorphisms. To the contrary of microsatellite 
analysis, the ISSR technique amplifi es fragments 
located between two repetitive regions present 
in various genomes (FALEIRO 2007), known as 
inter-microsatellite regions. This ISSR marker did 
demonstrate differences among different isolates 
of M. anisopliae var. anisopliae of the same origin 
and from the same host, principally when using 
the primers (GACA)4 and (GTG)5, providing DNA 
fi ngerprints for a number of isolates (TIAGO et al., 
2011). The genetic structure of Metarhizium spp. 
(M. anisopliae and its sister species, M. robertsii), 
pathogens found in Chinese burrower bugs 
populations (Schiodtella formosana), were assessed 
using ISSR. They differentiated into two main clades 
including over 71% of all strains causing epizootics, 
with a similarity of 83% (LUAN et al., 2013).

The soil ecology of Metarhizium anisopliae 
Metarhizium anisopliae demonstrates 

considerable metabolic and ecological versatility 
and has been observed colonizing the rhizosphere 
and adhering to the surfaces of plant roots, and it 
may signifi cantly infl uence this ecological niche by 
repelling and killing soil insects (HU & St. LEGER, 
2002). BRUCK (2005) observed that the conidia of 
M. anisopliae demonstrated greater persistence in the 
rhizosphere of Picea abies Linnaeus than in the soil 
alone. On the other hand, a pilot study by St. LEGER 
(2008) in a pasture site indicated that M. anisopliae 
could survive for various years in the soil, although 

with fl uctuations in its population levels. Additional 
studies will therefore be necessary to determine if the 
plant rhizosphere can truly be considered a refuge 
(a locality where the fungus can survive outside its 
insect host) for M. anisopliae in the soil. MEYLING 
& EILENBERG (2007) suggested that plant 
associations are important to the biological cycle of 
M. anisopliae in temperate regions. It is possible 
that this fungus has multiple functions in terms of 
plant protection, with antagonistic effects against 
phytopathogenic fungi. 

A number of studies have examined the 
molecular mechanisms involved in the capacity of 
M. anisopliae to adhere to both insects and roots, 
resulting in the identifi cation of adhesins MAD1 
and MAD2. Adhesin MAD1 is involved in insect 
pathogenicity and MAD2 with fungal adhesion to 
plant roots (WANG & St. LEGER, 2007a), and a 
study by WANG et al. (2005) examining genetic 
expression demonstrated that M. anisopliae could 
act as both a pathogen (growing on the cuticle and in 
the hemolymph of insect hosts) and a saprophyte in 
the rhizosphere (growing on the bean root exudates). 
WYREBEK & BIDOCHKA (2013) amplifi ed and 
cloned the full Mad1 and Mad2 genes in fourteen 
isolates of seven different species of Metarhizium to 
assess their genetic variability. Phylogenetic analyses 
of 5’ EF-1α (which is used for species identifi cation), 
Mad1, and Mad2 indicated that the evolution of the 
Mad2 gene was more congruent with the phylogeny 
of 5’ EF-1α than of Mad1. This suggests that Mad2 
diverged among the Metarhizium lineages and 
contributed to clade- and species-specifi c variations, 
while Mad1 was largely conserved. 

Studies have shown that some insect 
pathogenic endophytic fungi, such as Metarhizium, 
are able to transfer insect-derived nitrogen to 
plant roots, probably in exchange for plant sugars. 
Metarhizium has a phylogenetic heritage of plant 
symbiosis (i.e., the genus is closely related to other 
endophytes) and has also evolved as a generalist 
insect pathogen (BEHIE et al 2013). 

A number of workers have investigated the 
persistence of M. anisopliae in the soil, with greater 
fungal survival being observed in sandy-clay soils 
and in soils with average compaction density values 
(LANZA et al., 2004). High average numbers of 
colonies of M. anisopliae could be recovered 30 days 
after inoculation, and viability for up to 120 days was 
observed in previously sterilized soils (GUERRA 
et al., 2009) and for up to 216 days after fi eld 
inoculation (MARTINS et al., 2004). A study based 
on quantitative PCR (qPCR) demonstrated that 



Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects.

Ciência Rural, v.44, n.4, abr, 2014.

649

Metarhizium Clade 1 (M. majus, M. guizhouense, 
M. pinghaense, M. anisopliae, M. robertsii, M. 
brunneum) was present at high densities in soil 
samples from pastures and improved fi eld margins, 
indicating that both of these semi-natural habitat 
types provide potential refuges for these species 
(SCHNEIDER et al., 2012).

The introduction of exogenous 
microorganisms into natural and agricultural 
ecosystems may affect the soil microbial community 
and, consequently, diverse ecological processes in 
those environments. The effects of the introduction 
of entomopathogenic fungi into soil microbial 
communities represent an ecological intervention that 
has not yet been extensively examined. A study by 
SCHWARZENBACH et al. (2009) using ribosomal 
internal spacer analysis (RISA) to examine the effects 
of B. brongniartii on fungal community structures in 
soil microcosms indicated that its presence in the soil 
without the presence of its insect host had only small 
(or transitory) effects on the soil fungal community; 
this result differed from the situation after using the 
insecticide Carbofuran, which demonstrated signifi cant 
impacts even at the end of the experimental period. 
Other studies using the DGGE technique indicated that 
the fungal soil community structure was not signifi cantly 
infl uenced by the presence of M. anisopliae var. 
anisopliae URM5951 at 15, 30, 60, and 90 days after its 
inoculation in the soil (TIAGO et al., 2012).

CONCLUSION

Molecular genetic techniques can be 
useful in addressing taxonomic problems and in 
determining degrees of inter- and intraspecifi c 
genetic variation. Polymorphism studies have 
contributed to our understanding of the genetic 
diversity and population structures of fungi and have 
provided information that can be very important to 
programs of biological control. Molecular biological 
techniques have important roles in our understanding 
of the genes involved in host infection processes, 
such as the adhesion steps, appressorium formation, 
and the degradation of the host cuticle. Measures 
of the persistence of entomopathogenic fungi in 
the soil and any possible effects of their application 
on the structural and functional diversity of soil or 
rhizosphere microbial communities are essential 
ecological aspects that must be understood in 
agrosystems, as these microorganisms represent a 
signifi cant fraction of the soil biota in terms of its 
species diversity and the multiplicity of metabolic 
activities occurring in that milieu. Metarhizium is 

a plant symbiont that can act as a saprophyte in the 
rhizosphere but has also evolved as a generalist insect 
pathogen. As such, the paradigm that M. anisopliae 
is principally an insect pathogen is questionable, 
and additional studies will be necessary to better 
understand its ecological role in the soil.
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