First record of *Ophiocordyceps dipterigena* (Ascomycota: Hypocreales: Ophiocordycipitaceae) infecting adults of *Melanagromyza sojae* (Diptera: Agromyzidae) in Brazil

Geraldo Salgado-Neto¹* Priscila Andre Sanz-Veiga² Marcos André Braz Vaz³

¹Departamento de Defesa Fitossanitária, Universidade Federal de Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brasil. E-mail: gsalgado@bol.com.br.
*Corresponding author.
²Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Botucatu, SP, Brasil.
³Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas (UFAM), 69800-000, Humaitá, AM, Brasil.

ABSTRACT: This note is the first report on the infection of adult stage of *Melanagromyza sojae* Zehntner, 1900 (Diptera: Agromyzidae) by the entomopathogenic fungus *Ophiocordyceps dipterigena* (Hypocreales: Ophiocordycipitaceae) (Berk & Broome) G. H. Sung, J.M. Sung, Hywel-Jones & Spatafora, in subtropical Brazil. Entomopathogenic fungi, which attack dipteran insects, are of great scientific and economic importance mainly due to their potential as biological control agents of insect pests. Our findings bring new perspectives on the geographical distribution and host range of *Ophiocordyceps dipterigena*. We emphasize the need of further studies and research on new biological control agents of agricultural pests such as the soybean stem miner-fly.

Key words: biological control, entomopathogenic fungi, natural infection, stem miner fly, soybean pests.

Entomopathogenic fungi infect many insect orders as well as arachnids in order to complete part of their development and the dispersion of sexual spores (EVANS, 1982). The fungal families *Clavipitaceae*, *Cordycipitaceae* and *Ophiocordycipitaceae* (Euascomycetes: Hypocreales) include some of the most important and widespread group of entomopathogenic fungi (ARAÚJO & HUGHES, 2016). As an ecological group, these pathogens have broad geographical and host range and are of great ecological and economic importance, due to their potential as biological control agents and also as a source of medicinal products (FARIA & WRAIGHT, 2007; SHRESTHA et al., 2010; SOSA-GÓMEZ et al., 2010). The genus *Ophiocordyceps* Petch, 1931 (Hypocreales: *Ophiocordycipitaceae*) is a widely distributed group of fungi with approximately 200 described species (CROUS et al., 2004) infecting a wide range of insects from the following orders Coleoptera, Blattaria, Dermaptera, Diptera, Hymenoptera, Hemiptera, Isoptera, Lepidoptera, Mantodea, Orthoptera and Odonata (EVANS, 1982; SUNG et al., 2007; SUSA-GÓMEZ et al., 2010; ARAÚJO & HUGHES, 2016). However, despite the potential of this fungal group as natural control agents of insect populations, only few entomopathogenic species have been studied in detail. For instance, *Ophiocordyceps unilateralis* Tulusne & Tulasne, 1865 core clade sensu (ARAÚJO et al., 2018) that infects Camponotini ants and *Ophiocordyceps*
programs. Global spread and new records of that could be used in biological control
M. sojae information about some natural control agents of subtropical Brazil, increasing the information about
M. sojae identify the fungus parasitizing adults of invasive pest. In the present study we aimed to
in soybean fields from South America (GUEDES et al., 2017) highlight the need for further studies on
in the states of Santa Maria, Rio Grande do Sul state, Brazil. Flies and fungus stroma were collected in a 60mL container and transported to the laboratory of Agropar for species identification. The fungus identity was confirmed through morphological analysis following FREIRE (2015). Despite the fly’s advanced state of decomposition, its identification was possible through molecular characterization according to the methodology followed by ARNEMANN et al. (2016). Genomic DNA was extracted from the fly’s body by using the ReliaPrep™ gDNA Tissue Miniprep System kit (Promega). Amplification of the mitochondrial cytochrome oxidase I gene (COI) was performed by using the primers COI-F: 5’-GATTTTTTGGKCAYCCMGAG-3’ and COI-R: 5’-CRAATACRGCTCTATGATAA3’ and the 28S rRNA gene amplification by using the primers D2A: 5’-ACAAGTACCGTGAGGGAAAGTTG-3’ and D3B: 5’-TCGGAAGGACCCAGCTACTA-3’ (DE LEY et al., 1999). The amplified products were purified by precipitation with polyethylene glycol (SCHMITZ & RIESNER, 2006), subject to sequencing by the chain termination method using the BigDye 3.1 sequencing kit (Applied Biosystems) and analyzed by automated capillary sequencer 3500L (Applied Biosystems). Sequences obtained were then compared to voucher sequences available on the GenBank of the National Center for Biotechnology Information (NCBI) using the Blast program <http://www.ncbi.nlm.nih.gov>. Results confirmed that the infected flies belonged to M. sojae. Four female flies were reported on soybean plant leaves and presented two globular yellow structures protruding from their head that corresponded to the stroma of O. dipterigena.

The first record of Diptera infected by O. dipterigena in Brazil was reported by SOBESTIANSKY (2005) from Nova Petrópolis in the Rio Grande do Sul State; although, in this case, the host species identification was not possible. Later, FREIRE (2015) collected specimens belonging to O. dipterigena complex parasitizing flies of the family Muscidae, Asilidae and Micropezidae in the states of Santa Catarina, Paraná and Amazonas, however whether these specimens are in fact O. dipterigena or an unidentified Ophiocordyceps species still remains to be elucidated. BARBOSA et al. (2016)
First record of Ophiocordyceps dipterigena (Ascomycota: Hypocreales: Ophiocordycipitaceae) infecting adults of...

reported flies from the family Muscidae infected by O. dipterigena in the Minas Gerais state, Brazil. This is the first record in Rio Grande do Sul of the natural action of O. dipterigena parasitizing adults of M. sojae (Agromyzidae). Furthermore, this is the first time an adult Agromyzid fly is reported as host of O. dipterigena in south Brazil.

Ophiocordyceps dipterigena is a natural control agent of Agromyzid flies; and therefore may be of great interest in biological control programs of agricultural pests. To date, most biocontrol products are obtained from few fungi species, none of which have been developed from fungi belonging to Ophiocordycipitaceae. The potential of Ophiocordycipitaceae as a biological control agent of crop pests has been previously explored by SALGADO-NETO et al. (2017b) who tested the pathogenicity of Ophiocordycipitaceae against white grub pests (Coleoptera: Melolonthidae) (Louis René Tulasne and Charles Tulasne) G.H. Sung, J.M. Sung, Hywel-Jones and Spatafora, 2007 (Hypocreales: Ophiocordycipitaceae) against white grub pests (Coleoptera: Melolonthidae). Despite this, no previous study attempted to test the natural action of Ophiocordycipitaceae against soybean pests. Furthermore, biocontrol agents based of fungi have been used mainly against Coleoptera, Hemiptera and Lepidoptera, but few target dipteran insects (FARIA & WRAIGHT, 2007). Our finding indicated that O. dipterigena might be considered as a potential candidate for the biological control of Agromyzid flies, opening new possibilities for the use of entomopathogenic fungi in biological control programs. Further studies are encouraged to test the effectiveness of O. dipterigena in reducing the host population, therefore, its potential as a biological control agent of the soybean stem miner.

ACKNOWLEDGMENTS

We thank Fernando Mafalda Freire, Departamento de Botânica da Universidade Federal de Santa Catarina (UFSC), Brasil for his assistance in confirmation of the entomopathogenic fungi identification and Dr. João Araújo, Department of Biology, Department of Entomology, Penn State University, Pennsylvania, USA by revising and correcting the English language used in this manuscript.

DECLARATION OF CONFLICT OF INTEREST

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

REFERENCES

SPENCER, K.A. Agromyzidae (Diptera) of economic importance. The Hague : Dr. W. Junk B.V., 1973. 9V.

