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Abstract

Severe acute respiratory infection (SARI) outbreaks occur annually, with sea-
sonal peaks varying among geographic regions. Case notification is important 
to prepare healthcare networks for patient attendance and hospitalization. 
Thus, health managers need adequate resource planning tools for SARI sea-
sons. This study aims to predict SARI outbreaks based on models generated 
with machine learning using SARI hospitalization notification data. In this 
study, data from the reporting of SARI hospitalization cases in Brazil from 
2013 to 2020 were used, excluding SARI cases caused by COVID-19. These 
data were prepared to feed a neural network configured to generate predictive 
models for time series. The neural network was implemented with a pipeline 
tool. Models were generated for the five Brazilian regions and validated for 
different years of SARI outbreaks. By using neural networks, it was possible 
to generate predictive models for SARI peaks, volume of cases per season, and 
for the beginning of the pre-epidemic period, with good weekly incidence cor-
relation (R2 = 0.97; 95%CI: 0.95-0.98, for the 2019 season in the Southeastern 
Brazil). The predictive models achieved a good prediction of the volume of re-
ported cases of SARI; accordingly, 9,936 cases were observed in 2019 in South-
ern Brazil, and the prediction made by the models showed a median of 9,405 
(95%CI: 9,105-9,738). The identification of the period of occurrence of a SARI 
outbreak is possible using predictive models generated with neural networks 
and algorithms that employ time series.
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Introduction

Viral respiratory infections are easily spread in the community, affecting millions of individuals annu-
ally worldwide, representing a public health problem with high morbidity and mortality, especially 
in children, older adults, and immunocompromised patients 1. Most acute respiratory infections 
are caused by viruses, and symptoms, when present, range from mild (runny nose and cough) and 
influenza-like illnesses (ILI) to severe acute respiratory infections (SARI).

Seasonality of SARI outbreaks varies across different geographic regions 2. In Brazil, a large-sized 
country, a seasonal southward wave is observed, starting in late January in the North, and reaching the 
South in the middle of the year 3,4. Notably, intensity and duration of outbreaks also vary by region 5.

Influenza A (IAV) and B (IBV) viruses cause human influenza, considered one of the most impor-
tant infectious diseases of humanity. Seasonal flu epidemics occur every year and, eventually, new 
viral subtypes with pandemic potential emerge. In 1918-1919, the humanity was ravaged by the Span-
ish flu, caused by IAV H1N1; in 2009, a new IAV subtype (H1N1pdm09) caused the first influenza 
pandemic of the 21st century 1. In Brazil, among the 88,464 cases of SARI hospitalization reported in 
2009, 50,482 were confirmed as IAV H1N1pdm09, with 2,060 deaths 6.

Besides influenza virus, other respiratory viruses are also associated with SARI epidemics. In 
this sense, the new coronavirus (SARS-CoV-2) emerged in humans at the end of 2019, causing the  
COVID-19 pandemic 7. Within three years, more than 700 million COVID-19 cases have been 
reported and approximately 7 million people have died. On April 28, 2023, the World Health Organi-
zation (WHO) declared the end of COVID-19 as a public health emergency of international concern; 
nonetheless SARS-CoV-2 is still circulating among humans, thus constant surveillance is necessary 
to be prepared for outbreaks and epidemic situations 8.

Prevention and control of SARI outbreaks rely on constant epidemiological surveillance, and 
information of previous seasonal epidemics of respiratory viral infection, with accumulated data 
of cases, may be used to predict future epidemic seasons. Then, the development of prediction 
models that consider variables specific for each geographic region is important to prepare health-
care networks and to guide health authorities in decision-making for policies and planning 9,10. In 
this study, we develop and analyze predictive models for SARI outbreaks using data from Brazil. 
Results show that, it is possible to predict SARI outbreaks with good precision based on data from  
previous epidemics.

This study uses SARI notification data, but we highlight that other data sources have been used 
successfully in forecasting epidemics as well. For example, the U.S. Centers for Disease Control and 
Prevention (CDC) have actively promoted the use of predictive models to forecast influenza seasons 
with the usage of social media datasets 9.

This study aims to predict SARI outbreaks with machine learning models, using hospitalization 
notification data specific to SARI cases. The dataset used in this study comprises notifications of 
SARI-related hospitalizations in Brazil from 2013 to 2020, excluding COVID-19 cases.

Materials and methods

Case definition

ILI and SARI definition in Brazil is in line with that of WHO, with minor differences. According to 
WHO, ILI is characterized by fever > 38ºC, accompanied by cough within 10 days of infection, and 
SARI includes these symptoms and hospitalization of the patient 11. For means of epidemiological 
surveillance in Brazil, until 2019, case definition for ILI included fever > 38ºC, accompanied by cou-
gh or sore throat within seven days of infection; and SARI included ILI symptoms accompanied by  
O2 saturation < 95%, dyspnea, and increased respiratory rate, requiring hospitalization 12,13.

This study excluded data of cases that did not meet all SARI case definition, as well as duplica-
tes. Notifications were considered duplicates when they shared the same information for the set of 
variables related to notification ID, municipality of notification, and notification date. Due to lack of 
specificity regarding self-reported fever, especially for older adults, the following criteria were adop-
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ted to filter notified cases: presence of cough or sore throat, followed by the dyspnea or O2 saturation  
< 95% or difficult breathing; with hospitalization or death. To standardize notifications over different 
periods, records referring to COVID-19 cases were removed.

Data source

In Brazil, SARI cases were universally notified in 2009 in response to the H1N1pdm09 pandemic 14. 
Until 2018, notification was performed by the Brazilian Information System for Notificable Diseases 
(SINAN, acronym in Portuguese) 15, and then migrated to the Influenza Epidemiological Surveillance 
Information System (SIVEP-Gripe, acronym in Portuguese) 16, which collects data of SARI cases, 
including age, sex, symptoms, comorbidities, date of first symptoms, vaccination, polymerase chain 
reaction (PCR) results for respiratory viruses, hospitalization date, date of discharge or death, health 
unit and geographic location, and other data, totaling 252 variables.

In Brazil, a correlation between the occurrence of SARI and the rainy and cold periods has been 
observed, especially in the South 4,5. Considering that SIVEP-Gripe data does not include temperature 
as variable, and with the objective of evaluating the contribution of this variable in the generation of 
predictive models for SARI, the daily averages of minimum and maximum temperatures and thermal 
amplitude per region were added to the dataset, as well as the total average of temperatures per region. 
Temperature was calculated based on data from the website of the Brazilian National Institute of 
Meteorology (INMET, acronym in Portuguese) 17. The data retrieved bring values of maximum and 
minimum temperatures, at different times of the day in meteorological stations located in each state 
across the five regions.

Data processing

For this study, the dataset returned 689,797 records of SARI cases in Brazil from January 2009 to 
March 2021. For the predictive models tested, the dataset was restricted to the following variables: 
number of daily notifications (used as a dependent variable); date of first symptoms; sex (male, 
female); age group (young, adult, older adult); and positive diagnosis for IAV or IBV. Fields related 
to SARI-related symptoms according to the surveillance protocol (fever, sore throat, dyspnea, and 
cough) were not used, as this would bring redundancy on the number of notifications, not giving 
positive effects on the generation of models.

Data were treated considering the date of the first reported SARI symptoms. Moreover, data from 
2013 to 2020 were used to generate the predictive model due to the difference in protocols in the first 
years (2009 to 2012) and the insufficiency of data for 2021 (only three months).

After filtering and analyzing the data, the dataset containing SARI notification data was grouped 
by date of first symptoms, i.e., SARI notifications of the same date were summed in a single line; the 
grouping result showed a further reduction in the amount of data (rows of dataset available) for the 
generation of models.

For most variables, grouping was done by adding up the number of cases of hospitalization for 
SARI on each date of the first symptom that pointed to a certain category (sex, age, etc.). For sex, 
grouping was done in a similar way, adding up the total number of cases that pointed to the male or 
female categories on each date of first symptoms. Ages were grouped as young (0-19 years), adults 
(20-59 years), and older adults (> 60 years).

At the end of this first process of filtering and excluding records with problems, a total of 354,249 
records were available for generating predictive models. The data were separated by region due to 
each location specificity, and, during the evaluation process, different predictive models were gener-
ated for each region. At the end of data processing, temperature data was added. These data, grouped 
and divided by region, were used to generate predictive models. To reduce notification bias, the 7-day 
moving average was applied to the number of daily notifications.

To align with the Long Short-Term Memory (LSTM) algorithm, the date of initial symptoms 
was deconstructed into year, month, and day components. Subsequently, the values within each cat-
egory were normalized to a scale ranging from 0 to 1. As part of streamlining the predictive model 
generation process, the analysis includes weeks of the year instead of epidemiological weeks. This 
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simplification facilitates a more straightforward and coherent framework for the development and 
interpretation of the predictive models.

Predictive models

A range of machine learning algorithms were tested to model the observed seasons in each region to 
predict the next. Since this study deals with multivariate time series 18 with seasonality, the LSTM 
recurrent neural network (RNN) was chosen 19. Data were separated into two sets: 80% for model 
training and 20% for model testing. The dataset used for training and test used data available from 
the years prior to the year in which the prediction is to be made, with 2013 as the beginning of 
the period. Test data (20%) corresponds to the most recent period of the data set. Supplementary 
Material – Table S1 (https://cadernos.ensp.fiocruz.br/static//arquivo/suppl-e00122823_2613.pdf)  
presents parameters of the neural network, which was trained using the Knime tool and yielded the 
highest performance.

Tools

The Knime (https://www.knime.com/), a pipeline-based tool, was employed for data preparation, 
machine learning model generation, and model validation, thereby generating the results for analy-
sis. For result analysis, the programming language R (http://www.r-project.org) and the RStudio 
interface (https://rstudio.com/) were employed. The Knime workflow, the R code of the web tool for 
visualization, and user instructions are available on GitHub (https://github.com/vigilanciaepidemio 
logica/sari_prediction).

Results

Generation of predictive models

Although the original dataset contains data from the five Brazilian regions (North, Northeast, Cen-
tral-West, Southeast, and South), the analyses were preferably conducted with data from the South 
region due to higher consistency and a better-defined period of SARI occurrence (winter months) in 
relation to the other regions. We noted a significant variation on volume of annual notifications of 
SARI hospitalization. For example, in the South Region, 2014 and 2015 had low volumes of notifica-
tions (4,754 and 4,572, respectively) and, conversely, 2016 and 2020 had large volumes of notifications 
(11,266 and 22,140, respectively). Table 1 shows the volume of SARI notifications by region. The total 
number of records corresponds to the total number of SARI notifications and the total number of 
treated records corresponds to notifications grouped by day (data from 2013 to 2020).

Table 2 shows the test results for R2 to emphasize the importance of the volume of data for the 
generation of SARI predictive models. As the period decreases and, consequently, the amount of data 
for model generation also decreases, R2 assumes smaller values, indicating that the model will not 
provide a good prediction with smaller time windows.

The generation of predictive models was simulated using machine learning algorithms such as 
Random Forest, Naive Bayes, Tree Assemble, and the Resilient Backpropagation (RPROP) Multi-
Layer Perceptron (MLP); however, the verified accuracies were very low. Given the nature of the 
problem to be solved, a time series approach was shown to be more appropriate. Therefore, we used 
LSTM to generate predictions, which can perform well with seasonal time series 19.

In a comparison, the application of LSTM had better accuracy than the use of the Seasonal Autore-
gressive Integrated Moving Average (SARIMA) method. As Table 3 shows, the model generated with 
LSTM had a better metric in the model training step for almost all periods, except for the period with 
the least amount of data. The data used are from SARI notification for the South Region.
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Table 1

Amount of severe acute respiratory infection (SARI) data for each Brazilian region (2013 to 2020).

Region Total records (1) Total records treated Total records in 2020 (2) Percentage (%) of records (2/1)

North 22,994 2,361 13,129 57.10

Northeast 60,908 2,837 36,335 59.66

Central-West 29,712 2,653 12,660 42.61

Southeast 164,354 2,897 83,763 50.96

South 76,281 2,888 22,140 29.02

Total 354,249 13,636 168,027 -

Table 2

Comparison of the volume of data available in each region and period, with training results using the R2 metric. 

Region 2013-2018 2014-2018 2015-2018 2016-2018 Notifications 
(2013-2018)Total records R2 Total records R2 Total records R2 Total records R2

Southeast 2,173 0.96 1,811 0.73 1,453 0.44 1,094 0.05 98,166

South 2,164 0.98 1,810 0.97 1,452 0.90 1,093 0.80 48,942

Northeast 2,114 0.95 1,763 0.77 1,417 0.43 1,082 0.02 42,892

Central-West 1,929 0.67 1,618 0.45 1,329 0.41 1,046 0.10 17,604

North 1,644 0.58 1,403 0.33 1,176 0.60 1,000 0.00 16,696

Note: the evaluation metric of the predictive models is compared with the number of severe acute respiratory infection (SARI) notification records by 
each region of Brazil. For R2, validation is being considered for the volume of data from 2013 to 2018.

Table 3

Comparison of the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and neural network models 
with Long Short-Term Memory (LSTM) using the R2 metric. 

2013-2018 2014-2018 2015-2018 2016-2018 2017-2018 2018-2018

Records 2,164 1,810 1,452 1,093 730 365

SARIMA (R2) 0.66 0.68 0.68 0.65 0.54 0.46

Neural network (R2) 0.98 0.97 0.90 0.80 0.72 0.04

Then, different categories (independent variables) were used to investigate models with better 
performance and, therefore, different metrics were obtained for the tests, with the categories sex 
(male and female), age group (young, adult, and older adult), and positive diagnosis for IAV and IBV. 
These categories showed the best performance in the prediction made in the test stage, with deter-
mination coefficient (R2) = 0.99; mean absolute error (MAE) = 1.28; mean square error (MSE) = 2.89; 
root mean square error (RMSE) = 1.70; mean squared deviation (MSD) = 0.39; and mean absolute 
percentage error (MAPE) = 0.06. Notably, no significant improvements in accuracy were found when 
using temperature variables to generate the predictive models. Therefore, this variable was not used 
in the models presented as results in this study. Supplementary Material – Table S2 (https://cadernos.
ensp.fiocruz.br/static//arquivo/suppl-e00122823_2613.pdf) presents metrics for other combina-
tions of categories.
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Table 4

Values of prediction validation metrics, using the median and 95% confidence interval (95%CI), considering the time series of weekly cases for the South 
and Southeast regions, Brazil (2018 and 2019).

Target year/region Pearson 
Median (95%CI)

R2 

Median (95%CI)
RMSE 

Median (95%CI)
MAPE 

Median (95%CI)
Observed 

cases
Predicted cases (95%CI)

2019 – South 0.90 (0.90-0.91) 0.82 (0.81-0.83) 52 (51-53) 11 (10-14) 9,936 9,405 (9,105-9,738)

2018 – South 0.84 (0.81-0.86) 0.71 (0.66-0.73) 87 (81-94) 19 (17-24) 8,918 6,906 (6,348-7,550)

2019 – Southeast 0.98 (0.97-0.99) 0.97 (0.95-0.98) 35 (30-46) 10 (7-13) 14,332 14,399 (13,763-15,022)

2018 – Southeast 0.80 (0.75-0.83) 0.63 (0.56-0.69) 147 (141-155) 28 (24-32) 13,390 10,581 (9,616-11,503)

MAPE: mean absolute percentage error; RMSE: root mean square error. 
Note: the last two columns show the annual (seasonal) volume of reported severe acute respiratory infection (SARI) cases, observed and  
predicted, respectively.

Validation

For validation, models were generated to predict the reporting curves of SARI cases in years for 
which data are already available. The approximation of the curves was verified, considering the 
week of the beginning of the pre-epidemic period, volume of cases of notification in the season, and 
peak week. Accuracy metrics were used in the comparison (Table 4). To generate these metrics, 100 
simulations were created for each scenario tested. We report metrics in median and 95% confidence 
interval (95%CI). Due to the COVID-19 pandemic, which started in 2020 and remained active until 
2022, most validations were made for 2019, which, in addition to not showing the pandemic bias, also 
presents the largest amount of data for training models, as it accumulates data from previous years,  
starting in 2013.

Model application

Using time series algorithms, the prediction models generated with neural networks showed good 
results in predicting SARI outbreak seasons. As shown in Table 4, the generated models had good 
performance in the prediction. For both the South and Southeast regions, the performance measures 
were better for 2019 due to the greater amount of data for training the models. This relationship 
between volume of data and performance of the models was observed in the simulations for previous 
years, as the farther away from the present time, the less data is available for training.

Figures 1 and 2 show prediction curves generated by the models. As already mentioned, curves 
generated for 2019 showed greater accuracy with the observed curve. The previous year curve (green) 
is shown to assess whether the simple application of data observed in the previous year would be a 
way of predicting the following year. The variability of the generated models, obtained from random 
seeds, is small, with lower and upper limits very close to the median. The metrics collected for this 
graph showed a good performance prediction, presenting a Pearson’s coefficient of 0.90 (95%CI: 
0.90-0.91), R2 = 0.82 (95%CI: 0.81-0.83), RMSE = 52 (95%CI: 51-53), and MAPE = 11 (95%CI: 10-14).

There is an approximation of the predicted curve of a year (red lines in Figures 1 and 2) and the 
curve of cases in the previous year (green lines in Figures 1 and 2). However, this approximation is not 
always observed. In fact, as shown in Figure 3, the generated model shows a clear difference between 
the predicted curve for 2020 and the curve of 2019. Noteworthy, the volume of cases predicted for 
2020 (18,078) offered a very good approximation to the volume of cases observed (21,860; 17% dif-
ference), despite the low number of cases notified in 2019 (9,901 cases, 55% difference). This is an 
interesting result considering that 2020 was an atypical year, during which the COVID-19 pandemic 
brought problems such as inconsistent notifications, especially in the initial peak. Hence, the simple 
use of the previous year notification curve is not an effective way to predict notification of SARI hos-
pitalization cases for the following year.
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Figure 1

Prediction of hospitalized severe acute respiratory infection (SARI) cases for the South Region, Brazil (2018 and 2019).

Note: the graphs show the curves of cases observed in the previous year (green), cases observed in the year (blue), and the median of the prediction of 
cases (red) with their variability. It also identifies the volumes of cases that characterize the pre-epidemic period, with high intensity  
and very high intensity.
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Figure 2

Prediction of hospitalized severe acute respiratory infection (SARI) cases for the Southeast Region, Brazil (2018 and 2019).

Note: the graphs show the curves of cases observed in the previous year (green), cases observed in the year (blue), and the median of the prediction of 
cases (red) with their variability. It also identifies the volumes of cases that characterize the pre-epidemic period, with high intensity and  
very high intensity.
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Figure 3

Prediction of hospitalized severe acute respiratory infection (SARI) cases for the South Region, Brazil (2020).

Note: the graphs show the curve of SARI hospitalization cases reported in the previous year (green), curve of data observed in the year (blue), and 
prediction curve of number of cases (red).

Another comparative approach was to use the average number of notifications on hospitalized 
SARI cases from 2013 to 2018 for the South region. An average volume of 7,357 notifications was 
obtained against 9,936 observed and 9,327 notification cases predicted by the model (Figure 4). It is 
important to note that the peak of notifications of the predicted curve approximates the peak of the 
mean over previous seasons (week 26), and both are two weeks apart from the observed curve.

Discussion

In this work, we sought to find predictive models for SARI outbreaks using machine learning that 
present good performance (shown through metrics). These models can help guide adequate public 
health policies, in addition to allocating human and material resources in the necessary quantities 
and in a timely manner.

As results show, a prediction with good performance is possible. However, exceptional events, 
such as emergence of new viruses and pandemics, can be unfavorable to the prediction of models. 
Nevertheless, these models provide important information for healthcare management.

Our study also shows that the quality and quantity of data influence the performance of predictive 
models. As for quality, it is noted that the South and Southeast regions – which have a more uniform 
and concise notification – have a better the performance of predictive models than for other Brazilian 
regions. The number of notifications is impacted by the region’s population, but we noted that timely 
notifications also impact the volume of data available for the generation of predictive models. The 
South Region is a typical case where SARI notifications are made timelier 20.
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We highlight that, except for the South Region, Brazil had a concentration of records in 2020 due 
to the COVID-19 pandemic. This factor influenced the performance of models, in addition to the total 
number of records for each region. One explanation for this is the fact that respiratory infections are 
more common in regions with colder winters, such as the South Region 3,4, but SARS-CoV-2 reached 
all geographic regions significantly; therefore, the increase in case notification in relation to previous 
years was relatively greater in the other regions. In addition, it is possible that the alert situation dur-
ing the pandemic led health institutions to adopt a more strict SARI notification.

Obtaining a metric with great value (R2 = 0.998) in the model training test does not indicate that 
the prediction performance will be similar when using real data, but it is an indicator that the predic-
tion will be very close to the observed situation. As shown in Figure 1, for 2019 the model was able to 
predict the beginning of the pre-epidemic threshold with good accuracy. The volume of notifications 
in 2019 was 9,936 cases and the expected volume was 9,327 cases (-6%). If we had used the notifica-
tion curve for 2018 to predict 2019, we would have 8,918 cases (-10%) and the pre-epidemic threshold 
would be off by one week.

In the decomposition of a historical series of SARI notifications, using moving averages, for the 
South region in 2019, we can observe that the seasonal factor has an impact on the notification curve. 
Additionally, the presence of noise shows significant variations, hampering the approximation of a 
prediction curve. Even so, a predictive model based on neural networks and time series can absorb 
these difficulties (Supplementary Material – Figure S1; https://cadernos.ensp.fiocruz.br/static//
arquivo/suppl-e00122823_2613.pdf).

The use of time series analysis, specifically LSTM, was evident in a relevant study focused on 
predicting the trajectory and potential cessation period of the COVID-19 pandemic in Canada 21. 
The employment of the LSTM model in this study yielded a remarkable short-term accuracy rate of 
93.4%, while achieving a long-term forecast accuracy of 92.67%. These good results stress the effi-
cacy of LSTM-based time series analysis in accurately capturing and predicting the dynamics of the 
COVID-19 pandemic.

Figure 4

Prediction of hospitalized severe acute respiratory infection (SARI) cases for the South Region, Brazil (2019).

Note: the graph shows the curve of the average number of hospitalized cases notified in the period from 2013 to 2018 
(yellow) and the curve of the data observed in 2019 (blue).
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The main limitation of this study is related to the quality and quantity of data. With the need to 
standardize data collection, it was possible to use only data from years 2013 to 2020, given that previ-
ous years used other data collection and recording standards. Some regions of Brazil present fewer 
registered cases annually, so the number of available records was not favorable to the generation of 
better models, especially for regions with fewer records. Although SARI notification, particularly 
influenza, is mandatory, it is not possible to guarantee that all health care units did, in fact, notify 
all suspected and confirmed cases each season, especially before 2020. This can lead to a subnotifi-
cation of cases in each state and region. It is reasonable to assume that this effect can be greater in 
those regions that were historically less impacted by SARI (North and Northeast). Nonetheless, if the 
notification effort is sufficiently homogeneous over time in each state, this bias can be regarded as 
systematic. Therefore, it should not impact models accuracy regarding notified data.

On the other hand, periods with sudden changes in the volume of notifications, such as 2016 – 
when high numbers of influenza cases were reported due to a new H1N1pdm09 strain 22 – and 2020, 
with the COVID-19 pandemic. Even employing state-of-the-art models, accurately predicting sudden 
and significant shifts, such as the emergence of COVID-19, remains an inherently challenging task 23.  
Finally, the COVID-19 pandemic caused a significant impact in the laboratorial response capacity due 
to the high number of SARS-CoV-2 suspected cases to be tested. This challenge may have affected the 
capacity to test SARI cases for other respiratory viruses of interest such as the influenza viruses. If 
so, the number of influenza positive SARI cases notified could have been an underestimate to the real 
scenario in 2020. Despite these inherent limitations, it is important to acknowledge that the notifica-
tion system in Brazil can be regarded as highly effective.

Conclusion

Predictive models generated based on neural networks and algorithms that apply time series can 
identify the period of occurrence of a SARI outbreak. The prediction offered by these models can help 
public administrators define strategies to mitigate and combat outbreaks, contributing to the safety 
and quality of the population health, and avoiding unnecessary expenditure on human and financial 
resources. For instance, estimates for the expected volume of SARI notifications, the beginning of the 
pre-epidemic threshold, and the peak week of notifications can be of great value in defining public 
health policies.

Abnormal events such as pandemics, and the reduced volume of available data are factors that 
hinder predictive model generation. These models tend to present increasing quality due to accumu-
lation of annual data, which will allow generation of more assertive models.

Even though it is not possible to generate prediction models that perfectly fit the observed curves, 
the performance metrics obtained in this study are very favorable and show the main points for deci-
sion making, such as peak week of an outbreak, case volume, and pre-epidemic threshold.
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Resumo

Surtos de síndrome respiratória aguda grave 
(SRAG) ocorrem anualmente, com picos sazonais 
variando entre regiões geográficas. A notificação 
dos casos é importante para preparar as redes de 
atenção à saúde para o atendimento e internação 
dos pacientes. Portanto, os gestores de saúde pre-
cisam ter ferramentas adequadas de planejamen-
to de recursos para as temporadas de SRAG. Este 
estudo tem como objetivo prever surtos de SRAG 
com base em modelos gerados com aprendizado de 
máquina usando dados de internação por SRAG. 
Foram incluídos dados sobre casos de hospitaliza-
ção por SRAG no Brasil de 2013 a 2020, excluindo 
os casos causados pela COVID-19. Estes dados fo-
ram preparados para alimentar uma rede neural 
configurada para gerar modelos preditivos para 
séries temporais. A rede neural foi implementa-
da com uma ferramenta de pipeline. Os modelos 
foram gerados para as cinco regiões brasileiras e 
validados para diferentes anos de surtos de SRAG. 
Com o uso de redes neurais, foi possível gerar mo-
delos preditivos para picos de SRAG, volume de 
casos por temporada e para o início do período 
pré-epidêmico, com boa correlação de incidência 
semanal (R2 = 0,97; IC95%: 0,95-0,98, para a 
temporada de 2019 na Região Sudeste). Os mode-
los preditivos obtiveram uma boa previsão do vo-
lume de casos notificados de SRAG; dessa forma, 
foram observados 9.936 casos em 2019 na Região 
Sul, e a previsão feita pelos modelos mostrou uma 
mediana de 9.405 (IC95%: 9.105-9.738). A iden-
tificação do período de ocorrência de um surto de 
SRAG é possível por meio de modelos preditivos 
gerados com o uso de redes neurais e algoritmos 
que aplicam séries temporais.

Síndrome Respiratória Aguda Grave; 
Aprendizado de Máquina; Modelos 
Computacionais; Vigilância Epidemiológica; 
Redes Neurais (Computação)

Resumen

Brotes de síndrome respiratorio agudo grave 
(SRAG) ocurren todos los años, con picos esta-
cionales que varían entre regiones geográficas. 
La notificación de los casos es importante para 
preparar las redes de atención a la salud para el 
cuidado y hospitalización de los pacientes. Por lo 
tanto, los gestores de salud deben tener herramien-
tas adecuadas de planificación de recursos para las 
temporadas de SRAG. Este estudio tiene el objetivo 
de predecir brotes de SRAG con base en modelos 
generados con aprendizaje automático utilizando 
datos de hospitalización por SRAG. Se incluyeron 
datos sobre casos de hospitalización por SRAG en 
Brasil desde 2013 hasta 2020, salvo los casos cau-
sados por la COVID-19. Se prepararon estos datos 
para alimentar una red neural configurada para 
generar modelos predictivos para series tempora-
les. Se implementó la red neural con una herra-
mienta de canalización. Se generaron los modelos 
para las cinco regiones brasileñas y se validaron 
para diferentes años de brotes de SRAG. Con el 
uso de redes neurales, se pudo generar modelos 
predictivos para los picos de SRAG, el volumen de 
casos por temporada y para el inicio del periodo 
pre-epidémico, con una buena correlación de inci-
dencia semanal (R2 = 0,97; IC95%: 0,95-0,98, pa-
ra la temporada de 2019 en la Región Sudeste). Los 
modelos predictivos tuvieron una buena predicción 
del volumen de casos notificados de SRAG; así, se 
observaron 9.936 casos en 2019 en la Región Sur, 
y la predicción de los modelos mostró una mediana 
de 9.405 (IC95%: 9.105-9.738). La identificación 
del periodo de ocurrencia de un brote de SRAG es 
posible a través de modelos predictivos generados 
con el uso de redes neurales y algoritmos que apli-
can series temporales.

Síndrome Respiratorio Agudo Grave; Aprendizaje 
Automático; Modelos de Ordenador; Vigilancia 
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