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1 Introduction
Drying is one of the most common techniques used to reduce 

microbiological activity and to improve the stability of moist 
materials by decreasing their moisture content to a certain value 
(Torki-Harchegani et al., 2015). Traditional drying, e.g., open sun 
and shade methods, have been employed for the dehydration of 
agricultural products since a long time ago. Notwithstanding their 
low investment costs and simplicity, traditional drying methods 
pose some problems such as dust and microbial contamination 
of the dried materials as well as long drying time (Soysal, 2004). 
To overcome these problems, it is necessary to employ artificial 
dryers for the dehydration of agricultural and food products 
(Demiray & Tulek, 2012).

Although more than 400 types of different dryers are reported 
in the literature to dry plants and foodstuff, convective dryers are 
the most widely used devices to dehydrate agricultural products 
(Aghbashlo et al., 2013). In this process, several heat and mass 
transfer mechanisms occur but, diffusion within the product is 
considered as the dominant factor controlling moisture transfer 
from inside of the product to its surface. Then, the water is 
transferred from the product and air interface to the air stream 
by convection (Beigi, 2015).

Drying process utilizes high energy compared to other 
production processes due to relatively low energy efficiency of 
dryers and high latent heat of water evaporation (Syahrul et al., 
2002). Drying consumes 10-15% of the total national industrial 
energy demand in Canada, France and the USA, as well as 20-25% 
in Germany and Denmark (Motevali et al., 2014). Therefore, 

it is the most important challenge for the drying industry to 
perform energy analysis to achieve optimum process conditions 
and reduction of energy utilization. Energy analysis is practical 
in quantitative evaluation of energy requirements and energy 
losses in drying systems. Moreover, information obtained from 
energy analysis is useful to design new dryers, to optimize the 
drying parameters, and even to design energy recovery systems.

The main objectives of this study were to dry apple slices 
in a convective hot air dryer and to investigate the effect of air 
temperature and flow rate on drying kinetic and effective moisture 
diffusivity of the samples as well as total energy consumption, 
energy efficiency, drying efficiency and thermal efficiency of 
the process.

2 Materials and methods
2.1 Drying experiments

The fresh apples used in this study were purchased from a 
local market in Isfahan (central Iran) and stored in a refrigerator 
at 4-8 °C until the experiments started. The average initial 
moisture content of the fresh samples was determined using 
standard oven method at 103 °C until constant weight was 
achieved (Schössler et al., 2012), and obtained approximately 
0.83 g water/g wet matter. Prior to each experiment, the apples were 
placed at room temperature for about 2 h so that they would 
reach thermal equilibrium with the environment. For each 
drying experiment, the apples were washed with water, hand 
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peeled and cut into 4 mm thickness, and approximately 500 g 
of the samples were spread as a monolayer on the tray.

To conduct the drying experiments, a laboratory-scale 
convective hot air dryer was designed and fabricated (Figure 1). 
The drying air was supplied by a centrifugal fan, blown into 
an electrical heater to heat up to the desired temperature and 
then passed to the drying chamber. The drying air velocity was 
measured by a portable hot wire anemometer (Lutron, AM-4201 
model, Taiwan) and was controlled by using a frequency inverter 
(TECD, 7300 CV model, Taiwan). Temperature of the drying air 
was measured by a thermometer (PT100, 0.1 °C resolution) in the 
drying chamber inlet and controlled by using a microcontroller.

The drying experiments were performed at air flow rates of 
1, 1.5 and 2 m s–1; and temperatures of 50, 60, and 70 °C in an 
air relative humidity remained at constant level of 30% using an 
ultrasonic humidifier equipped with a microcontroller.

For each experiment, the dryer was run to reach a steady 
state conditions for the set point (at least 40 min), and then the 
samples tray was placed on the drying chamber. The samples 
mass was monitored with a digital balance accurate to 0.001 g 
(ViBRA, model EG 620-3NM, Japan) at regular time intervals of 
5 min, and the instantaneous moisture content was calculated 
using Equation 1:

0 0( 1)W M WM
W
− + =  

 
  (1)

where M and M0 are the moisture content at any given time 
(g water/g wet matter) and the initial moisture content (g water/g wet matter), 
respectively and W and W0 are the mass of samples at any given 
time (g) and the initial mass of fresh samples (g), respectively.

2.2 Determination of effective diffusivity (Deff) and 
activation energy (Ea)

Dne dimensional diffusion is considered and Fick’s diffusion 
equation is used for the simple analysis of the only diffusion-based 
thin layer drying equation (Demiray & Tulek, 2012). Taking the 

isotropic behaviour of the samples into account with regard to 
the water diffusivity, to define the mass transfer process, Fick’s 
second law of unsteady state diffusion can be used as Equation 2:
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By assuming uniform moisture distribution, negligible 
external resistance, constant diffusivity and negligible shrinkage 
through drying process, the Equation 2 can be solved by using 
the separation of variables. For different solid geometries an 
analytically solution has given for Equation 2. For an infinite 
slab, it is written as Equation 3 (Alibas, 2014):
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where Deff, L, and t are the effective diffusivity (m2 s–1), half 
thickness of the slab (m), and the drying time (s), respectively. 
In addition, MR is moisture ratio defined as Equation 4:
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In Equation 4, Me is equilibrium moisture content of drying 
samples (g water/g wet matter).

For long drying periods, Equation 3 can be simplified to 
only the first term of the series and it is written in logarithmic 
form as Equation 5 (Alibas, 2014):
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By plotting experimental data in term of ln(MR) against 
drying time, a straight line was obtained and the effective moisture 
diffusivity was calculated using Equation 6:
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Figure 1. A schematic view of the dryer set up.
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To determine the activation energy, the effective moisture 
diffusivity was related with drying temperature as Equation 7:
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eff

abs
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= − 

 
  (7)

where D0 is Arrhenius constant or the constant equivalent to 
the diffusivity at infinitely high temperature (m2 s–1), R is the 
universal gas constant (8.314×10–3 kJ mol–1 °k–1), Tabs is the absolute 
temperature (°k), and Ea is the activation energy (kJ mol–1).

The graph of ln(Deff) against 1/Tabs was plotted, and its slope 
was used to determine the activation energy as Equation  8 
(Beigi, 2015):

( ) aslope of line R E− × =   (8)

2.3 Energy consumption

In a hot air dryer, energy consumption is estimated from the 
sum of thermal energy (Eth) and mechanical energy (Emec). Equation 
9 was used to calculated thermal energy (Motevali et al., 2014):

( ). . . . .th a aE A v C T tρ= ∆   (9)

where A, v, ΔT are tray area (m2), air flow rate (m s–1) and 
temperature difference (K), respectively. Also, aρ  and Ca are 
density (kg m–3) and specific heat capacity (kJ kg–1 K–1) of inlet air, 
respectively, and are calculated using Equation 10 (Naghavi et al., 
2010) and Equation 11 (Aghbashlo et al., 2012), respectively:
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The mechanical energy consumed by blower was determined 
as Equation 12 (Vieira et al., 2007):

. .mec airE P m t= ∆   (12)

where P∆  and mair are pressure difference (mbar) and inlet air 
mass (kg), respectively.

2.4 Thermal efficiency

The thermal efficiency indicates how well an energy 
conversion or transfer process is accomplished in a device that 
uses thermal energy. In drying term, thermal efficiency is defined 
as the ratio of latent moisture evaporation heat of the sample 
to the amount of required energy to evaporate moisture from 
free water. Thermal efficiency was calculated using Equation 13 
(Hebbar et al., 2004):
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where P, hfg and F are sample loading density (kg m–2), latent heat 
of vaporisation (kJ kg–1) and utilized capacity of heating source 
(kW), respectively. Additionally, mw is the mass of removed water 
(kg), and was calculated using Equation 14:
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Mf is the final moisture content of drying samples (g water/g wet matter).

Equation 15 was used to calculate the latent heat of vaporisation 
(Aghbashlo et al., 2012):
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where Tabs is the absolute temperature of drying air.

2.5 Energy efficiency

Energy efficiency is defined as the ratio of the energy used for 
evaporation of moisture from the sample to the total consumed 
energy, and can be derived by using energy balance equation 
based on the first law of thermodynamics. Energy efficiency was 
determined using Equation 16 (Vieira et al., 2007):

w
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where Qw is consumed energy for the moisture evaporation (kJ), 
and was calculated using Equation 17 (Motevali et al., 2014):

.w fg wQ h m=   (17)

2.6 Drying efficiency

Drying efficiency is defined as the ratio of the energy 
utilized for heating the sample for moisture evaporation, to the 
total consumed energy and was determined using Equation 18 
(Vieira et al., 2007):
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In Equation 18, Qm is the energy utilized for sample heating 
(kJ) and was calculated using Equation 19:

, ,( )m dm m m o m iQ W C T T= −   (19)

In Equation 19, Wdm is the weight of the dry material (kg), 
and Tm,i and Tm,o are the inlet and outlet material temperature 
(K), respectively. Also, Cm is the moist material specific heat, and 
for apple, defined as Equation 20 (Mykhailyk & Lebovka, 2014):

( )( 1)m w w dC C C C M= + − −   (20)

where Cw and Cd are specific heats of water (approximately 4186 J/kg 
K for the 0-80 °C temperature) and dry matter, respectively.

3 Results and discussion
3.1 Dehydration characteristics

For each drying condition, the experiments were replicated 
three times and the average values were used. In each experiment, 
the sample lot was dried to the final moisture content of about 
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0.10 g water/g wet matter (Sacilik & Elicin, 2006). Table 1 shows the 
drying duration, average dehydration rate and effective moisture 
diffusivity values at different drying conditions. From the table, 
it is noticed that drying time decreased as the air temperature 
and flow rate increased from 50 to 70 °C and 1 to 2 m s–1, 
respectively. Similar results have been reported in the literature 
for air temperature and flow rate influences on dehydration 
rate for chamomile (Motevali et al., 2014), native cassava starch 
(Aviara et al., 2014), and potato pulp waste (Carvalho et al., 2014). 
Drying duration of agricultural materials can be affected by some 
factors such as indigenous properties, initial and final moisture 
contents of the product, drying method and drying conditions. 
Higher temperatures and flow rates of drying air facilitate the 
heat transfer rate between thermal source and the material 
leading to faster moisture evaporation and lower drying time.

The moisture diffusivity for each drying condition was 
calculated using Equation 7, and the results are listed in Table 1. 
The results show that the moisture diffusivity values were in 
the range of 6.75×10–10-1.28×10–9 m2 s–1, which are generally 
within the range given for food materials moisture diffusion 
(10–11 to 10–6 m2 s–1) (Dlanipekun et al., 2014). The obtained 
moisture diffusivity values for the apple slices agree well with 
the values reported for different vegetables and fruits in the 
literature. Doymaz (2011) reported the diffusivity values to be in 
the range of 9.32×10–11-1.76×10–10 m2 s–1 for sweet potato dried 
at temperatures of 50, 60 and 70 °C; and constant air velocity 
of 2  m  s–1. Minaei  et  al. (2012) reported effective moisture 
diffusion coefficient of pomegranate arils in the ranges of 
0.74×10–10 52.5×10–10 m2 s-1 and 3.43×10–10 to 32.05×10–10 m2 s–1 
for vacuum and microwave drying, respectively. Tulek (2011) 
dried mushroom slice at temperatures of 50, 60 and 70 °C and 
air velocity of 0.2 m s–1 and reported the effective moisture 
diffusivity to be in the range of 9.619×10–10 to 1.556×10–9 m2 s–1.

From Table 1, it can be seen that any increase in air temperature 
increased the effective diffusivity value. This observation is in 
agreement with the results reported for agricultural products 
e.g., kale (Mwithiga & Dlwal, 2005) and red chillies (Kaleemullah 
& Kailappan, 2006). In fact, an increase in temperature causes 
a decrease in water viscosity and increases the activity of water 
molecules. These phenomena facilitate diffusion of water 
molecules in object capillaries, consequently increasing the 
moisture diffusivity. In addition, the effect of drying air flow 
rate on moisture diffusivity can be seen where any increment in 

air flow rate increased the moisture diffusivity of the samples. 
Similar results have been reported in the literature for fruits 
and vegetables e.g., sweet potato (Singh & Pandey, 2012) and 
mushroom (Ghanbarian et al., 2015).

The activation energy (Ea) was calculated by plotting the 
graph of ln(Deff) against 1/Tabs (Figure 2) and using Equation 7. 
The Ea values were 17.77, 19.75 and 25.41 kJ mol–1, respectively. 
The obtained activation energy is within the general range reported 
for food materials (1.27-110 kJ mol–1) (Aghbashlo et al., 2008).

3.2 Total energy consumption and energy efficiency

The total energy consumed in drying apple slices at different 
air temperatures and flow rates is presented in Figure 3. From this 
figure, it can be seen that at each air temperature, total energy 
utilization increases with an increment in air velocity. In addition, 
at each air flow rate, energy consumption of drying process 
decreases with increasing air temperature. These observations 
are in agreement with the results reported for thin layer drying 
of pomegranate arils (Motevali  et  al., 2011) Russian olive 
(Abbaszadeh et al., 2012) and chamomile (Motevali et al., 2014).

Table 1. Values of drying time and average drying rate of apple slices.

Air temperature
(°C)

Air flow rate
(m s–1)

Drying time
(min)

Average drying rate
(g water min–1)

Effective moisture
diffusivity (m2 s–1)

50
1 225 1.78 6.75×10–10

1.5 180 2.22 7.03×10–10

2 160 2.49 7.37×10–10

60
1 155 2.58 8.24×10–10

1.5 125 3.19 8.58×10–10

2 110 3.64 9.69×10–10

70
1 135 2.96 9.93×10–10

1.5 105 3.81 1.08×10–9

2 95 4.21 1.28×10–9

Figure 2. Arrhenius-type relationship between effective diffusivity and 
reciprocal absolute temperature.
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at temperatures between 140 and 180 °C to be in the range of 
7.48-8.54%. According to Figure 4, the minimum and maximum 
energy efficiency values were achieved at 50 °C and 2 m s–1, and 
at 70 °C and 1 m s–1, respectively. Moreover, the obtained results 
indicate that increasing temperature increases the energy efficiency, 
while increasing the air flow rate decreases the energy efficiency.

3.3 Thermodynamic parameters

Thermal efficiency and drying efficiency were calculated 
using Equation 5 and Equation 10, respectively, and the results 
are shown in Table 2. From this table, it is can be seen that any 
increment in the air temperature increases thermal and drying 
efficiencies while any increment in the air flow rate decreases 
both of them. The minimum drying and thermal efficiencies with 
3.42 and 3.70% values, respectively, were obtained for drying 
treatment of 50 °C and 2 m s–1 treatment, while the maximum 
values with 12.29 and 9.44%, respectively, were achieved at 70 °C 
and 1 m s–1 treatment. From Table 2 and Figure 4, it is revealed 
that thermal efficiency and energy efficiency values are very 
close. In fact, in convective hot air dryers, the main portion of 
energy consumption is allocated to heating up the air (thermal 
energy) and mechanical energy consumption is significantly 
lower than that of thermal energy. In the present study, average 
shares of thermal and mechanical energy were estimated to be 
approximately 98 and 2%, respectively. Additionally, it can be 
seen that drying efficiency is higher than thermal and energy 
efficiencies since part of the consumed energy is spent to increase 
temperature of the drying product (Qm). These results agree 
well with those reported in the literature (Vieira et al., 2007; 
Jindarat et al., 2011; Motevali et al., 2014).

4 Conclusions
In this study, apple slices were dried in a hot air dryer and 

influences of air properties on energy parameters and drying 
behaviour of the samples were investigated. According to the 
obtained results, it was seen that dehydration time decreased as 
the air temperature and flow rate increased. The effective moisture 
diffusivity values were in the range of 6.75×10–10-1.28×10–9 m2 s–1, 
and increased with both increasing air temperature and air 
flow rate. At each air temperature, total energy consumption 
increased with increasing air velocity and at each air flow rate, 
decreased with increasing air temperature. Energy efficiency 
values were in the range of 2.87-9.11%. Any increment in the air 
temperature increased thermal and drying efficiencies while any 
increment in the air flow rate decreased both of them. Finally, it 
is concluded that higher temperatures and lower flow rates for 
drying air cause better energy efficiencies during drying process.
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