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1 Introduction
As a monoterpene compound, Linalool is a major component 

of essential oils in lots of aromatic species (Elisabetsky et al., 
1995), and present in the dried leaves of cinnamomum 
camphora (Weaver et al., 1991). Due to promising biological 
activities including cytotoxic (Yang et al., 2014), anti-microbial 
(Bagamboula  et  al., 2004), insect-repellant properties 
(Beier  et  al., 2014), anti-inflammatory activity (Peana  et  al., 
2002), antihyperglycemic (Weaver  et  al., 1991; More  et  al., 
2014), antitumorigenic potential (Jana et al., 2014) and sedative 
effects, linalool as a natural plant-product has been extensively 
applied in various fields, such as perfumes, cosmetics, flavoring 
agents and medical science (Re et al., 2000). However, linalool 
is unstable, volatile and readily oxidizable. These problems 
may be solved by encapsulation technology because a sensitive 
substance can be entrapped in a membrane or capsule. It can 
be separated from the deteriorating circumstance (Xiao et al., 
2014; Zhu et al., 2016). Encapsulation can also isolate a substance 
from the surrounding matter reactions (Matsuno & Adachi, 
1993). Chitosan is an ideal polymeric shell component of oily 
nanocapsules because it has advantageous biological properties, 
such as biocompatibility (Khalid et al., 2006), biodegradability 
(Okamoto et al., 2002; Aguirre-Loredo et al., 2017), antimicrobial 
activity (Li et al., 2008), mucoadhesivity (Anitha et al., 2011), 
low toxicity (Chaparro-Hernández et al., 2015) and permeability 
enhancement (Tobío et al., 2000). Sodium tripolyphosphate is an 
anionic cross-linker; it exhibits non-toxicity and quick gelling 

ability that make it a favorable cross-linker for ionic gelation 
of chitosan (Kafshgari et al., 2011). Encapsulation of linalool 
in chitosan can form nanocapslue, which can be used in food, 
textile, cosmetics and clinical fields.

The useful information in energy calculation for process, 
process control and equipment selection, and quality control in 
the industry, can be provided by rheological data related to flow 
behavior of semi-solid or liquid materials. Rheology defines as 
a relationship between the resulting deformation and the stress 
acting on a given material (Tabilo-Munizaga & Barbosa-Cánovas, 
2005). The rheology data have been used in various fields 
such as cosmetics, perfumery, paint and food industry (Fang, 
2010; Curi  et  al., 2017). The characterization of viscoelastic 
properties and the science of rheology play an important role 
in the manufacture of a lot of products. As important quality 
control tools, flow properties can be used to reduce batch to 
batch variations and maintain the superiority of the product. 
However, rheological data about nanocapsule encapsulated 
linalool has rarely been reported.

In this paper, the linalool-loaded nanocapsules, with 
chitosan and sodium tripolyphosphate as wall materials, were 
produced with the ionic gelation method in o/w emulsion. 
Fourier transformation infrared spectroscopy (FTIR), dynamic 
light scattering (DLS), thermogravimetric analysis (TGA), and 
scanning electron microscopy (SEM) were used to characterize 
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Lin-nanocapsules. The oscillatory shear and steady-state shear 
measurements of nanocapsule emulsion were systematically 
investigated.

2 Materials and methods
2.1 Materials

Golden-Shell Biochemical Co., Ltd. (Zhejiang, China) provided 
chitosan (average molecular weight = 150 000) which used as 
a wall material; linalool was obtained from Beijing University 
Zoteq Ltd (Beijing, China). Sodium tripolyphosphate, fatty 
alcohol-polyoxyethylene ether (AEO9), polyoxyethylene castor 
oil (EL40) were obtained from Sinopharm Chemical Reagent 
Co., Ltd (Shanghai, China).

2.2 Preparation process of Lin-nanocapsules

The production process of linalool-loaded nanocapsules via 
ionic gelation method was as follows. STPP was dissolved at 0.03% 
(w/w) in water. AEO9 and EL40 in a ratio of 1:1 as emulsifier at 
0.16% (w/w) and linalool as core material at 0.5% were mixed 
by magnetic stirring at 500r/min for 10 min. The mixture of 
emulsifier and core material was added into the STPP solution 
for 10 min by ultrasonic treatment at 800 W using JY92-2D. 
This mixture formed the oil phase. Chitosan was dissolved in 
water with a concentration 0.15% (w/w). Acetic acid was added 
into the solution of chitosan until its pH was 5.3. This mixture 
formed the water phase. The oil phase was dropped into water 
phase at 3d/s by peristaltic pump and ratio of oil phase and 
water phase was 2:3. The mixture was stirred at 500r/min for 
further 30 min by magnetic stirring. The preparation principle 
of Lin-nanocapsule is shown in Figure 1.

2.3 Morphology of Lin-nanocapsules

The morphology of nanocapsules was investigated by 
Scanning electron microscopy. The SEM was conducted with 
an S-3400N scanning electronic microscope (Hitachi, Japan). 
By conductive double-sided tape, electro sprayed micro particles 
were mounted on metal stubs, and then were coated with gold 
under an argon atmosphere (Wang et al., 2013).

2.4 Lin-nanocapsule particle size and polydispersity index

Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK) 
was used to determine the the polydispersity index (PDI) and 
particle size of Lin-nanocapsules. A solid state He–Ne laser of 

633.0 nm was used and each sample measurement was carried 
out with an angle detection of 90° at 25°C.

2.5 FTIR measurement

FTIR was used to prove that linalool was encapsulated. 
a VERTEX 70 FTIR spectrophotometer (Bruker, Ettlingen, Germany) 
was adopted to determine the chemical structures of linalool, 
Lin- nanocapsules and blank nanocapsules. The wavenumber 
was in the range of 4000 to 500 cm–1. The interaction between 
sodium tripolyphosphate and chitosan was characterized by 
the infrared spectra.

2.6 Thermogravimetric analysis

Thermogravimetric analysis was adopted to determine 
processes such as decomposition and thermal stability, oxidation, 
and dehydration, and to investigate volatile content (Liu et al., 
2013). Thermogravimetry diagram of linalool, Lin-nanocapsules 
and blank nanocapsules were determined with a TGA-Q5000IR 
(TA Instruments, USA) thermogravimetric analyzer. The heating 
rate was 10 °C/min. About 5 mg samples were weighed and were 
heated from 25 to 600 °C. Nitrogen was used during pyrolysis 
process at a constant flow of 20ml/min.

2.7 Rheological properties

AR-G2 Rheometer (TA Instrument, US) was used to 
measure rheological properties of Lin-nanocapsules emulsion. 
The measuring configuration adopted was a concentric coaxial 
cylinder. Steady-state shear and oscillatory shear measurements 
of Lin-nanocapsules emulsion were conducted at 25 °C.

Measurements in steady-state shear condition

For the measurements in the steady-state shear condition, a 
certain amount of nanocapsules emulsion is loaded in the fixture. 
In the “steps” options, conditioning step, stepped flow step and 
post-Experiment step are selected. In conditioning step, initial 
temperature is set as 25 °C and equilibrium duration is set as 
2 min; in stepped flow step, shear rate as variables and the range 
of Shear rate (S-1) is set as 0.001-1000, data mode is “log”, that 
means data is scanned by logarithmic mode; in post-Experiment 
step, temperature is set as 25 °C. Changing of apparent viscosity 
with the shear rate was determined.

Temperature sweep measurement

In the temperature sweep measurement, a certain amount 
of nanocapsules emulsion was loaded in the fixture. In the 
“steps” options, conditioning step, temperature sweep step 1, 
temperature sweep step 2 and post-Experiment step were selected. 
Conditioning and post-Experiment step was set as same with 
steady-state shear measurements; in temperature sweep step 1, 
temperature was set from 20 °C to 40 °C and temperature increment 
was set as 1 °C/min; in temperature sweep step 2, temperature 
was set from 40 °C to 20 °C and temperature increment was 
set as 1 °C/min. Then changing of apparent viscosity with the 
temperature was determined.Figure 1. The preparation principle of Lin-nanocapsule.



Xiao; Xu; Zhu

Food Sci. Technol, Campinas, 37(4): 613-619, Oct.-Dec. 2017 615

Strain sweep measurement

The strain sweep experiment, in which a gradually increasing 
strain was applied at one frequency, was carried out for nanocapsules 
emulsion to ensure operation in the linear viscoelastic region 
(LVR). In the strain sweep measurement, a certain amount of 
nanocapsules emulsion was loaded in the fixture. In the “steps” 
options, conditioning step, strain sweep step and post-Experiment 
step were selected. Conditioning and post-Experiment step is set 
as same with steady-state shear measurements; in strain sweep 
step, strain was set as 0.1%-10% and frequency was set as 1Hz, 
then a frequency sweep experiment was performed.

Frequency sweep measurement

The frequency sweep measurement was further carried out 
within LVR at 1% strain to obtain more precise information on 
emulsion stability at rest. A certain amount of nanocapsules 
emulsion was loaded in the fixture. In the “steps” options, 
conditioning step, strain sweep step and post-Experiment step 
were selected. Conditioning and post-Experiment step was set 
as same with steady-state shear measurements; in frequency 
sweep step, the angular frequency was as variables and the range 
was 1-1000rad/s. Data mode was “log”, which means data was 
scanned by logarithmic mode. From the phase angle, and these 
amplitudes of stress and strain, changing of the storage (or elastic) 
modulus G’, the loss (or viscous) modulus G”, and complex 
modulus G* with the oscillation frequency were determined 
(Luckham & Ukeje, 1999).

3 Results and discussions
3.1 SEM micrograph

SEM was adopted to investigate the nanocapsules morphology. 
Nanocapsule SEM micrograph is shown in Figure 2a.

It shows that the shapes of nanocapsules are nearly spherical 
and nanocapsules with smooth surfaces are closely packed. 
Particle size distribution is comparatively uniform.

3.2 DLC results

DLC results of Lin-nanocapsules are shown in Figure 2b. 
The particle size data showed a trend of normal distribution. 
Dynamic light scattering result proved that distribution of particle 
size was comparatively uniform and the average particle size of 
nanocapsule encapsulated linalool was 352 nm. The polydispersity 
index (PDI) was 0.214. Dynamic light scattering results were 
consistent with the results from SEM.

3.3 FTIR results

FTIR spectra of linalool, Lin-nanocapsules and blank 
nanocapsules are shown in Figure 3a.

The structure characteristics of nanocapsules were determined 
through infrared spectroscopy. Characteristic absorption 
frequencies of sample covered the whole of 500-4000 cm−1 area. 
Due to C-C, C-O, C-H, and O-H stretching vibrations, peaks at 
996, 1450, 2972 and 3569 cm−1 appeared in the FTIR spectrum 
of linalool respectively. After linalool was encapsulated, FTIR 
spectrum of Lin-nanocapsules showed that the characteristic 
absorption peaks at 3569 and 1450 cm−1 disappeared, and a peak 
appeared at 1098 cm−1 due to the phosphoric acid root and the 
protonation of amino cross linking effect (Papadimitriou et al., 
2008). Peak types of Lin-nanocapsules and blank nanocapsules 
were similar. The shape and position of the peaks proved that 
linalool was successfully encapsulated in the wall materials.

3.4 Thermogravimetric analysis

Thermogravimetry diagram of linalool, Lin-nanocapsules 
and blank nanocapsules are shown as Figure 3b.

The linalool weight loss was 96.50% as show in thermo 
gravimetric analysis diagram of linalool from 30 to 150°C. Linalool 
evaporated almost completely at 200°C. Three stages can be 
observed from the curves of the thermal decomposition process 
of Lin-nanocapsules and blank nanocapsules. The weight losses 

Figure 2. SEM image (a) and dynamic light scattering (b) of Lin-nanocapsules.
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in the first stage of Lin-nanocapsules and blank nanocapsules 
were 2.08% and 3.7% respectively, mainly due to evaporation 
of moisture from 30 to 100 °C. For Lin-nanocapsules and 
blank nanocapsules, the weight loss mainly occurred from 
100 to 400 °C. The values of weight loss were about 64.56% and 
65.34% respectively, which is because of the loss of hydrogen 
bonds between free amino and the N-acetyl groups (Grant et al., 
1990) and the decomposition and depolymerization of CS 
glucosamine units. In the third stage, core materials evaporated 
due to the destruction of wall material structure, which is a 
reason for the Lin-nanocapsules weight loss. In addition, the 
depolymerization of hydrogen bonds between the free amino 
groups and N-acetyl, and CS glucosamine unit decomposition 
are also reason of Lin-nanocapsules and blank nanocapsules, 
and the weight loss was about 13.2% and 7.5%, respectively. 
The thermo gravimetric curve also shows that encapsulation 
can reduce linalool release and increase linalool retaining time 
at high temperature. The thermal decomposition weight loss 
of various samples in different temperature ranges is showed 
in Table 1.

The total weight loss of Lin-nanocapsules and blank 
nanocapsules was nearly 77.76% and 72.84%.

Loading capacity (LC) was defined as core material 
encapsulated in nanocapsules as shown Equation 1.

Encapsulated Linalool weightLC(%) 100
Nanocapsules weight

= ×    (1)

According to the literature (Xiao et al., 2014), Equation 2 
can be obtained.

77.76% 72.84%
1 2.08% 1 3.70%

−
=

− − −
LC
LC

  (2)

The LC of linalool can be calculated according to Equation 2 
and the value was 15.17%.

3.5 The rheological behavior

Static rheological measurements

As a function of shear rate, the viscosity variation of the 
nanocapsule emulsion was shown as Figure 4a.

Lin-nanocapsules emulsion was non-Newtonian. However, at 
high shear rates, it can change to Newtonian as shown in Figure 4a. 
Because initially nanocapsules were dispersed disorderly in an 
emulsion, nanoparticles were elongated with the flow direction 
under the shear field action. Due to space rearrangement of 
nanocapsules was happened in emulsion system, nanocapsules 
had a directional arrangement. At the same time, interaction of 
the nanoparticles gradually reduced, energy consumption and 
the internal friction decreased accordingly, so apparent viscosity 
and flow resistance decreased with shear rate increase, until 
stable (Gao et al., 2004).

Temperature sweep measurement

The temperature-viscosity diagram of Lin-nanocapsules 
emulsion is showed in Figure 4b.

Figure 4b indicated that the decreasing trend of apparent 
viscosity with the rise in temperature. Because the arrangement 
of nanoparticles was affected by temperature and activity ability 
enhancement of particle was enhanced with rise in temperature, 
interaction between particles reduced and liquidity increased. 
Therefore, the apparent viscosity decreased. Because viscous flow 
activation energy of chitosan was particularly large and viscosity 
of sample was sensitive to temperature, product stability was 
affected by these factors (Sakurai et al., 2000). In the process 
of production, high viscosity can lead to difficult conveying 
processing of sample, while low viscosity of sample can lead to 
difficult shaping and overlapping temperature circular sweep 
curves. The safety temperature range of the sample was 20 ~ 40 °C, 
so 25 °C was selected as test temperature of the sample.

Figure 3. FTIR spectra (a) and Thermogravimetric analysis diagram (b) of linalool, Lin-nanocapsules and blank nanocapsules.
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Strain sweep measurement

A representative rheogram is shown in Figure 5a. LVR was 
obtained from a strain sweep experiment.

The results of strain sweep measurement manifested that 
the linear viscoelastic region of the Lin-nanocapsules emulsions 
was performed at a fixed frequency of 0.1%-10%. Therefore, 1% 
was selected for the dynamic frequency sweep measurements 

Table 1. The thermal decomposition weight loss of linalool, Lin-nanocapsules and blank nanocapsules.

Samples
The first stage The second stage The third stage

Temperature range 
(°C)

Weight loss  
(%)

Temperature range 
(°C)

Weight loss  
(%)

Temperature range 
(°C)

Weight loss  
(%)

Linalool 30-150 96.50 150-200 3.50 - -
Blank nanocapsules 30-100 3.70 100-400 65.34 400-600 7.50
Lin- nanocapsules 30-100 2.08 100-400 64.56 400-600 13.20

Figure 4. The apparent viscosity plots of Lin-nanocapsule emulsion with shear rate (a), and the temperature-viscosity diagram of Lin-nanocapsules 
emulsion (b).

Figure 5. The complex modulus plots (a) with strain, and the storage and loss moduli plots (b) with frequency (10 to 1000 rad/s).
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