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1 Introduction
Apium graveolens L. var. rapaceum is a root vegetable with 

a bulbous hypocotyl, growing to 120-200 cm tall. Celeriac is 
harvested when its hypocotyl is 10 to 14 cm in diameter. It is 
source of mineral salts, vitamins (K, C and E) and has antioxidant 
property. Its oil is a remedy for skin complaints and rheumatism 
(Alibaş, 2012).

Drying agricultural products is one of the oldest methods 
to store them and prevent them from decay. Safe storage, less 
volume, longer shelf life, easy packing and transport, improving 
economical value and producing usage diversity are the advantages 
of drying (Babalis & Belessiotis, 2004; Torki-Harchegani et al., 
2015). Open sun and shade methods is a traditional drying 
method that has been employed for the dehydration because 
of low costs and simplicity. However, these methods have some 
problems such as microbial contamination of the dried materials, 
dust as well as long drying time (Soysal, 2004). To overcome 
these problems, it is essential to employ artificial dryers for the 
removal of water from agricultural and food products (Demiray 
& Tulek, 2012). The type of dryer must be suitable for specific 
product attributes required. Improper drying causes quality 
deterioration of product, unreasonable charges, high energy 
consumption, high process duration, etc. Therefore, food drying 
is heat sensitive and demands special attention (Mujumdar, 2014).

There are two main types of dryers: direct dryers and vacuum 
dryers. In the former, hot air at near atmospheric pressure is used 
to supply the heat to evaporate water or other solvents from the 
product, but in the latter, a reduced-pressure atmosphere is used 
to surround the product. Vacuum dryers have some advantages 
such as: higher drying rate, higher energy efficiency, lower drying 

temperature and oxygen deficient processing environment 
compared to direct dryers (Wu et al., 2007). There are some 
papers on using vacuum drying to dry various food materials 
and investigations made on the drying kinetics, effect of vacuum 
drying conditions on drying process and the qualities of dried 
products (Alibaş, 2012; Bazyma et al., 2006; Jena & Das, 2007; 
Zakipour & Hamidi, 2011).

Many researchers have used mathematical modeling to 
predict the drying behavior of products being dried, control the 
drying and design new dryers. These models are divided into three 
categories e.g., theoretical, semi-theoretical and empirical (Beigi, 
2016). Theoretical models are built based on understanding the 
fundamental heat and mass transfer equations and mechanism 
during the process whereas the other two are built by fitting 
model parameters to experimental data using multiple linear 
regressions (Torki-Harchegani et al., 2015). These models are 
accurate for the drying process, but they need a computing tool 
and substantial information about physico-thermal properties 
of drying materials (Hii et al., 2009). The empirical models are 
built based on direct correlation between moisture content and 
drying time. Although these models validate high fitting rates 
of drying curves in most cases, they neglect fundamentals of 
dehydration process. The semi-theoretical models are derived 
from direct solution of Fick’s second law by assuming some 
simplifications, and offer a compromise between theory and ease 
of application. To date, several researches have reported regression 
modeling of dehydration kinetics of various biological products 
such as lemons (Torki-Harchegani et al., 2016), rapeseeds (Han 
& Keum, 2011), sweet cherries (Doymaz & Ismail, 2011), onions 
(Jafari  et  al., 2016), pomegranate arils (Minaei  et  al., 2011), 
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potatoes (Amiri Chayjan, 2012), red sea-weeds (Fudholi et al., 
2014), mushrooms (Tulek, 2011) and tomatoes (Sadin et al., 2014).

The artificial network (ANN) is a data processing system 
inspired by biological neural systems and has been used to 
solve complex and nonlinear problems that have multiple 
input variables to predict multiple output variables. An ANN 
learns from examples through iteration without requiring any 
knowledge of the relationship of the process parameters, and is 
consequently capable of adapting to a changing environment. 
If ANNs are employed in an appropriate form, they can provide 
reasonable solutions in the event of technological faults. Some 
researchers have utilized the ANNs to simulate drying process of 
agricultural and food products such as bananas (Mohebbi et al., 
2011), seedy grapes (Çakmak & Yıldız, 2011), paddies (Beigi et al., 
2016) and onions (Jafari et al., 2016).

There are many studies about simulation drying process 
using mathematical models and ANNs but no study has been 
reported to predict the vacuum drying kinetics of celeriac by 
ANNs. Therefore, the main objective of the present study was 
to find the best ANN topology to predict the kinetics of drying 
celeriac.

2 Materials and methods
2.1 Experimental data

Alibaş (2012) reported the experimental data for moisture 
content of celeriac slices during vacuum drying. The data were 
used to simulate drying process. The researcher dried celeriac 
slices 57 mm in diameter and 3 mm in height. Initial moisture 
content was 14.39 (gwater/gdry matter) and final moisture content was 
0.1 (gwater/gdry matter). The celeriac slices were dried by a vacuum 
dryer at pressure of 0.1, 3, 7, 10 and 17 kPa and temperatures 
of 55, 65, 75 °C (Alibaş, 2012).

2.2 Artificial neural network modeling

In this study, Neural network tool of MATLAB 2013b 
(MathWorks, Inc., Natick, MA) was applied to fit the models 
to experimental moisture content data. Multilayer feed forward 
back propagation neural network is chosen as the type of ANN. 
Multilayer feed forward neural networks are popular structures 
among artificial neural networks widely used to predict and 
control food processing operations and solve complex problems 
by modeling input-output relations (Che et al., 2011). The back 
propagation is a learning algorithm widely used for learning 
multilayer feed forward neural networks in many applications 
with the great advantage of simple applications (Choi et al., 2008). 
Back propagation uses the gradient-descent search method to 
adjust the connection weight that increases the ANNs accuracy. 
This learning algorithm has been successfully used by some 
researchers in various applications, e.g., pattern recognition, 
location selection and performance evaluations (Bongards, 
2001; Che, 2010; Wu et al., 2007).

The input layer of ANN has three parameters: 1) chamber 
pressure, 2) air temperature and 3) drying time; and the output 
of the network is moisture ratio. Therefore, for each topology, 
3 and 1 neurons were applied to the input and output layers, 

respectively. Furthermore, the number of neurons in the hidden 
layer(s) was determined by calibration through several runs. 
For example, Figure 1 shows a network with topology 3-6-1.

The artificial neural network was trained with 4 methods: 
1) scaled conjugate gradient (SCG), 2) Polak-Ribiere 
conjugate gradient (PCG), 3) BFG quasi-Newton (BFG), and 
Levenberg-Marquat (LM). Two different kinds of transfer functions 
were used for neurons in hidden layer(s); 1) hyperbolic tangent 
sigmoid (Tansig), and 2) log sigmoid (Logsig). The Tansig and 
Logsig functions are defined in Equations 1 and 2, respectively 
(Tohidi et al., 2012):
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Where Xj is defined as (Tohidi et al., 2012; Equation 3):
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=
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In these equations, m is the number of neurons in the output 
layer, Wij is the weight of connections between layers i and j, Yi 
is the output of the neurons in layer i, and bj is the bias of the 
neurons in layer j.

Figure 1. A schematic illustration of neural network with 3-6-1 topology.
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The number of experimental data was 352 divided into three 
subsets randomly. The majority of them (70%) were used for 
computation and updating weights and biases of the network 
(the training subset). The second (15%) was used to measure 
network generalization, and to halt training when generalization 
stops improving; and the last one (15%) had no effect on training 
and so provided an independent measure of network performance 
during and after training (Zare et al., 2015; Tohidi et al., 2012). 
The input and output data were normalized between [-1, 1] by 
this Equation 4 (Beigi et al., 2016):

( )
( )
2

1min

max min

x x
y

x x
−

= −
−

	 (4)

where, xmax and xmin are the largest and the smallest data in given 
dataset, respectively; and x and y are the no normalized and 
normalized data, respectively.

The performance of ANNs was determined by mean square 
error (MSE) (Tohidi et al., 2012; Equation 5):
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−

=
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where, P is the number of neurons in output layer; N is the 
number of samples in the dataset; yij is the network output for 
sample j at processing element j; and dij is the desired output 
for sample j at processing element. The training algorithm was 
stopped when MSE increased 6 times at the end of training 
cycles consecutively.

3 Results and discussion
Table 1 shows the results of ANNs modeling of the celeriac 

slices during vacuum drying process. The effects of the number 
of hidden layers, the number of neurons in each hidden layer, 
the type of transfer function and the type of training algorithm 
on precision of moisture content predictions are presented in 
Table 1. As shown, among the applied networks, the one with 
a topology of 3-6-9-1, transfer function of Tansig and a LM 

Table 1. The results of artificial neural networks modeling in predicting moisture content of celeriac.

Network topology Transfer function 
of hidden layer(s) Training algorithm Number of training cycles MSE

3-6-1 Logsig SCG 8 8.1644
3-6-1 Logsig CGP 45 0.22606
3-6-1 Logsig BFP 41 0.067327
3-6-1 Logsig LM 64 0.054231
3-6-1 Tansig SCG 27 0.71245
3-6-1 Tansig CGP 17 0.51867
3-6-1 Tansig BFP 39 0.093903
3-6-1 Tansig LM 54 0.83465

3-6-9-1 Logsig SCG 123 0.20627
3-6-9-1 Logsig CGP 51 0.50672
3-6-9-1 Logsig BFP 15 0.18641
3-6-9-1 Logsig LM 11 0.05508
3-6-9-1 Tansig SCG 30 0.47816
3-6-9-1 Tansig CGP 53 0.56405
3-6-9-1 Tansig BFP 61 0.095496
3-6-9-1 Tansig LM 82 0.0033437

3-6-18-1 Logsig SCG 22 1.9313
3-6-18-1 Logsig CGP 102 0.25456
3-6-18-1 Logsig BFP 40 0.99962
3-6-18-1 Logsig LM 71 0.0035701
3-6-18-1 Tansig SCG 39 0.17031
3-6-18-1 Tansig CGP 44 0.54634
3-6-18-1 Tansig BFP 52 0.13435
3-6-18-1 Tansig LM 40 0.011303
3-6-36-1 Logsig SCG 8 11.6112
3-6-36-1 Logsig CGP 11 0.27534
3-6-36-1 Logsig BFP 88 0.024149
3-6-36-1 Logsig LM 50 0.037061
3-6-36-1 Tansig SCG 153 0.067355
3-6-36-1 Tansig CGP 65 0.081617
3-6-36-1 Tansig BFP 87 0.039316
3-6-36-1 Tansig LM 19 0.015994
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training algorithm had better performance with the minimum 
mean square error. These results are comparable with previous 
results reported by different researches in the literature. 
Beigi et al. (2016) found a neural network that had an excellent 
ability to predict the paddy drying kinetics. This network 
has 4-18-18-1 topology, transfer function of hyperbolic tangent 
sigmoid and a Levenberg-Marquat back propagation training 
algorithm (Beigi  et  al., 2016). Jafari  et  al. (2016)  examined 
different topologies to the drying curves of onion slices reported 
the feed forward back propagation network with topology 2-5-1, 
Levenberg-Marquat training algorithm, hyperbolic tangent 
sigmoid transfer function as the best neural network system 
(Jafari et al., 2016). Zare et al. (2015) investigated combined hot 
air/infrared drying process and reported that feed forward back 
propagation neural network with topology of 4-8-14-1, training 
algorithm of Levenberg-Marquat and a transfer function of 
hyperbolic tangent sigmoid had the best prediction of drying 
curves (Zare  et  al., 2015). Tohidi  et  al. (2012) showed that 
Levenberg-Marquat learning algorithm and hyperbolic tangent 
sigmoid had a good performance to predict drying moisture 
content of rough rice (Tohidi et al., 2012). Momenzadeh et al. 
(2012) introduced artificial neural network to predict drying 

time of green pea in a microwave-assisted fluidized bed dryer 
and found that a network with Logsig transfer function and 
back propagation algorithm made the most accurate predictions 
(Momenzadeh et al., 2012). Yousefi et al. (2013) used artificial 
neural network to estimate the moisture content of papaya fruit 
during drying in a cabinet dryer, and reported the multilayer 
perceptron network with 3-9-1 topology, LM training algorithm 
and the Logsig transfer function as the best network to predict 
the drying curves (Yousefi et al., 2013).

To evaluate the performance of the best ANN in modeling 
celeriac drying curves, the predicted moisture content values 
were plotted against experimental values (Figure 2). As presented, 
the ANN could be successfully used to predict moisture content 
during the drying process. In Figure 3, three different conditions 
of drying were chosen to show the variation between experimental 
data and predicted values by ANN. As shown, the experimental 
points are very close to predicted curves. Similar results were 
observable for other drying conditions indicating a suitable 
prediction. Figure  4 shows the histogram of the variations 
between experimental and predicted values of moisture content 
of the celeriac slices. 285 cases (more than 80% of all cases) have 
errors in the range [-0.05, 0.05].

Figure 2. Comparision between exprimental and predicted values of moisture content of the celeriac slices for three datasets (training, validation 
and test) and all data.
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had the best performance to predict the variations in the celeriac 
slices during vacuum drying.
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