Assessment of the strength of the trunk and upper limb muscles in stroke subjects with portable dynamometry: a literature review

Avaliação da força muscular pós-AVE pela dinamometria portátil: uma revisão da literatura

Júlia Caetano Martins, Luci Fuscaldi Teixeira-Salmela, Larissa Tavares Aguiar, Lucas Araújo Castro e Souza, Eliza Maria Lara, Christina Danielli Coelho de Morais Faria*

Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil

Abstract

Introduction: Clinical measurements of strength in stroke subjects are usually performed and portable dynamometers are one of the most employed instruments. Objective: To verify the standardization procedures of the methods used to assess the strength of the trunk and upper limb muscles with portable dynamometers in stroke subjects, as well as to assess the psychometric properties which were already investigated. Materials and methods: An extensive search was performed on the MEDLINE, SciELO, LILACS, and PEDro databases, by combining specific key words, followed by active manual searches by two independent researchers. Results and discussion: Fifty-eight studies were included: three related to the trunk and 55 to the upper limb muscles, including handgrip and pinch strength assessments. The most investigated muscular groups were handgrip, elbow flexors/extensors, wrist extensors, and lateral pinch. Nine studies reported adequate reliability

* JCM: MSc, e-mail: julia_caetano@yahoo.com.br
LFTS: Ph.D, e-mail: lfts@ufmg.br
LTA: Grad., e-mail: larissatavaresaguiar@gmail.com
LACS: MSc, e-mail: lucas.araujo.ufmg@gmail.com
EML: Grad., e-mail: izamlara@yahoo.com.br
CDCMF: PhD, e-mail: cdcmf@ufmg.br
levels and the seated position was employed in the majority of the studies which assessed trunk, handgrip, and pinch strength, while the supine position was used for the other muscular groups. The number of trials most used was three, while the reported contractions and rest times were variable. **Final considerations:** Most studies reported the positioning and/or the data collection protocols; however, there was no consensus on the standardization procedures. The only investigated psychometric property was reliability. Few studies evaluated the trunk muscles and other psychometric properties.

Keywords: Dynamometer. Trunk. Upper limbs. Reliability. Validity.

Introduction

Stroke is an important cause of disabilities. Every year, thousands of working-age adults become partially or totally disabled by this health condition (1), which results in emotional distresses for the patients and their families and socio-economic impact on the health systems (2). Stroke subjects may demonstrate several impairments, being the motor ones the most common (3-5) and those that affect the performance of daily life activities (6).

Among the observed motor impairments, muscular weakness has shown significant associations with activity limitations (3, 7, 8) and social participation restriction (7, 8). Specifically, weakness of the upper limb (UL) (9-13) and trunk (14, 15) muscles, which are involved in the performance of many basic, instrumental, work, and leisure activities, lead to important functional limitations. About 70% of the subjects with paresis of the UL muscles have some degree of functional limitation (13, 16, 17). Moreover, after the onset of the hemiparesis, stroke subjects demonstrate difficulties in moving and controlling their trunk (18), which affect their balance, transfer, gait performance, and independence in many daily activities (15). Thus, the strength of the UL and trunk muscles strength become an important outcome to be evaluated and considered within the clinical decision-making process for the rehabilitation of stroke subjects.

Within clinical settings, the assessment of the strength of the UL and trunk muscles in subjects with stroke is commonly performed with the manual muscle test (MMT). However, due to its subjectivity and the difficulty to evaluate and differ between the degrees of strength rated as good and normal (grades four and five) (19, 20), it is necessary to use more
objective and sensitive measures to detect changes in strength, such as the portable and isokinetic dynamometers (19). Portable devices, such as the handheld, handgrip, and pinch dynamometers, are more easily applied within clinical settings, when compared to the isokinetic dynamometer (21).

The portable dynamometers, which record the maximal isometric force generated during an isometric contraction (22), have been used to assess the strength of the trunk (14, 23), UL (24-27), and handgrip (9, 12, 28) and pinch (29-31) muscles of subjects with stroke. They are practical devices that can be placed between the examiner’s hand and the muscle group to be tested, similar to the MMT assessment (32) or used with the subject exerting force directly on the equipment, in the case of handgrip and pinch assessments (33-36). Furthermore, they provide quantitative measures of strength, which has an important advantage, compared to the MMT assessment (37).

Studies have reported several factors that could influence the measures obtained with portable dynamometers (21, 33), such as positioning of the subjects and the device, number of repetitions, contraction and rest time, prior demonstration and familiarization with the procedures, and supply of verbal or visual encouragement. Other factors should also be considered when selecting these devices for the assessment of strength in subjects with stroke, such as unilateral or bilateral assessments and the measurement properties already established for this specific population. Before the portable dynamometers be appropriately employed for the measurement of the strength of the UL and trunk muscles of subjects with stroke, it is necessary to standardize the assessment procedures and to ensure that they show appropriate psychometric properties. Within this context, the aims of this study were to investigate whether there were standardized protocols for the use of the portable dynamometers for the assessment of the strength of the UL and trunk muscles, including handgrip and pinch strength, in subjects with stroke, and verify the investigated psychometric properties. Based upon the results of this review, it will be possible to determine the most commonly used protocols and the psychometric properties, to allow a scientifically-based clinical decision making regarding the use of portable dynamometry for the assessment of the UL and trunk muscles in subjects with stroke.

Methods

Initially, electronic searches were performed in MEDLINE (via PUBMED), SciELO, LILACS, and PEDro databases. The MEDLINE search strategy followed guidelines developed by the Cochrane group (38), which was adjusted for the other databases, using descriptors related to UL, trunk, and handheld dynamometry. The search terms used for the UL included words related to handgrip and pinch, were: upper limb, upper extremity, hand grip, palmar grip, grip, grasp, hand strength, pinch, hand, and palmar. For the trunk, the search terms included word related to back, trunk, abdomen, and thorax. Finally, for the dynamometry, the following words were used: Dynamometer, pinch gauge, pinch strength, Preston pinch gauge, Jamar, handheld dynamometer, and muscle strength.

To be included, the studies should clearly report in the methodology section that the strength of the trunk or UL muscles, including handgrip or pinch strength, with portable dynamometers was assessed in subjects with stroke. There were no restrictions regarding the language of publication and all studies published until November 2011 were included.

The selection of the studies was performed by two independent examiners, following three steps, as recommended and commonly used (39-41). The first step consisted of reading the titles and excluding the that clearly did not meet the established criteria (39-41). Then, the selected abstracts were analyzed and those that did not meet the inclusion criteria were also excluded (39-41). The last step consisted of reading the full papers. An active manual search from all selected studies was also performed, following the same previously described criteria and procedures.

Results

The electronic search identified 202 studies. After screening the titles, 122 were excluded for the following reasons: the population was not stroke individuals or the dynamometer was not portable. In the second step, 33 studies were excluded for the same reasons or for not assessing the strength of the trunk or UL muscles. In the third step, eight studies were excluded. Of the 39 studies that met the inclusion criteria, five could not be retrieved. Thus, 34 studies retrieved by the electronic search were included in this review. From the active manual search in these
34 studies, 24 others were included. Therefore, a total of 58 studies fulfilled all eligibility criteria and were included in this review (Figure 1).

Amongst the 58 included studies, three evaluated the strength of the trunk (5.17%) (14, 23, 42), while 55 (94.83%) analyzed the strength of the UL muscles, including handgrip and pinch strength. Out of the 55, 41 assessed handgrip (4, 9, 12, 28, 31, 43-78), 15 pinch (29-31, 47, 54, 55, 57, 58, 61, 71, 76, 78-81), and 17 the strength of other UL muscles (24-27, 46-48, 55, 59, 63, 70, 76, 82-86). The studies that measured the strength of the trunk muscles included 59 individuals of both sexes, who had ages ranging from 27 to 87 years and were at the acute stages (three to 27 days post-stroke). Those that assessed handgrip strength included 1,408 individuals of both sexes, who had ages ranging from 16 to 93 years and the time since the onset of stroke ranging from two days to 30 years. The studies which assessed pinch strength included 536 subjects of both sexes, who had ages ranging from 16 to 94 years and the time since the onset of the stroke ranging from two days to 23 years. The studies which evaluated other UL muscles included 468 individuals of both sexes, who had ages ranging from 17 to 89 years and the mean time since the onset of stroke ranging from two days to 30 years.

Regarding the trunk muscles (Table 1), the anterior flexors were evaluated in two studies (66.7%) (14, 42) and the lateral flexors in all three included studies (100%) (14, 23, 42). In all studies, the seated position was used and two reported the data collection protocols, describing the number of trials and the duration of the isometric contractions (14, 42). One study (33.3%) performed unilateral assessment of the lateral flexors (23) and two (66.7%) bilateral (14, 42).

Figure 1 - Flow chart of the selection of the studies

-Fisioter Mov. 2015 Jan/Mar;28(1):169-86-
Table 1 - Data extraction of the studies which assessed the strength of the trunk muscles in subjects with stroke with portable dynamometers

<table>
<thead>
<tr>
<th>Study</th>
<th>Muscular group</th>
<th>Subject positioning</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohannon (23)</td>
<td>Lateral flexors</td>
<td>Sitting and trunk stabilization</td>
<td>NI</td>
</tr>
<tr>
<td>Bohannon (14)</td>
<td>Anterior and lateral flexors</td>
<td>Sitting, stabilization by the examiner in the proximal thigh</td>
<td>One trial, maximal isometric contractions over 5s</td>
</tr>
<tr>
<td>Bohannon et al. (42)</td>
<td>Anterior and lateral flexors</td>
<td>Sitting, stabilization by the examiner in the proximal thigh</td>
<td>One trial, maximal isometric contractions over 3 to 4s</td>
</tr>
</tbody>
</table>

Note: NI = not informed.

From the 41 studies that evaluated handgrip strength, 24 (58.54%) provided detailed information regarding the subjects' positioning or the data collection protocols (Table 2). Since 17 studies did not provide this information (43-59), they were not included in the table. As can be seen in Table 2, the seated position was employed in 11 studies (73.33%) (9, 12, 28, 31, 62, 63, 65, 70, 72, 76, 77). Twenty-two studies reported the number of trials and the majority of them performed three trials (72.73%) (9, 12, 28, 31, 60, 64, 65, 67, 68, 71-73, 75, 76, 78). The duration of the maximal isometric contractions was reported by five studies, and 10 seconds was the time most commonly used (60%) (28, 65, 69). The resting time was reported in seven studies with alternated measurements between the UL being the most employed method (42.9%) (12, 68, 74). Eighteen studies (69.2%) reported bilateral measures of handgrip strength (4, 9, 12, 28, 47, 48, 52, 54-56, 59, 61, 62, 68, 72, 74, 76, 77), while eight (30.8%) only assessed the paretic limb (31, 45, 58, 64, 65, 70, 71, 73).

From the 15 studies that assessed pinch strength, lateral pinch was evaluated by nine (29-31, 47, 57, 58, 61, 78, 81), the palmar pinch by seven (47, 54, 55, 57, 61, 76, 78), pulp-to-pulp pinch by two (78, 80) and tip-to-tip pinch by one (81). Two studies did not specify the type of pinch that was measured (71, 79). As observed in Table 3, five studies did not provide information regarding the subjects' positioning or data collection protocols (47, 54, 55, 57, 58). The seated position was adopted by all four studies that provided information regarding the participants' positioning (29-31, 76). Ten studies reported the number of trials, and seven used three trials (70%) (31, 61, 71, 76, 78, 80, 81). The duration of the contractions was reported by only one study (30), and varied from 1 to 3 seconds. Three studies reported different resting times between the trials: 10s (79), 15s (81), and 30s (80). Six studies (50%) assessed bilateral pinch strength (47, 54, 55, 61, 76, 80) and six (50%) only the paretic side (29-31, 58, 71, 81).

The main evaluated other muscular groups of the UL (except for handgrip and pinch strength) were the wrist flexors: eight studies (24, 46, 48, 55, 59, 76, 82, 83); wrist extensors: 13 studies (24-27, 46-48, 55, 59, 76, 82, 83, 86); elbow flexors: 17 studies (24-27, 46-48, 55, 59, 63, 70, 76, 82-86); elbow extensors: ten studies (24, 25, 27, 46, 48, 55, 59, 76, 82, 83); shoulder flexors: nine studies (24, 25, 46-48, 55, 59, 76, 82); shoulder extensors: eight studies (24, 25, 46, 48, 55, 59, 76, 82); internal shoulder rotators: five studies (24, 25, 27, 46, 48, 55, 59, 76, 82); external shoulder rotators: six studies (24-26, 59, 82, 83); and shoulder adductors: nine studies (24, 25, 27, 46, 48, 63, 70, 82, 86). Other muscular groups, such as the shoulder adductors (24, 82) and flexors (55, 76) and extensors of the index finger (55, 76) were evaluated in two studies.

Of the 17 studies, three did not describe the subjects' positioning or the data collection protocols (46, 48, 59). Fifteen reported the subjects' positioning and 14 (93.3%) used the supine (24-27, 47, 55, 63, 70, 76, 82-86) and one (6.7%) the seated position (47). Nine studies reported the number of trials and three trials (44.44%) were employed in the majority of the studies (24, 25, 82, 83). Nine studies described the duration of the maximal isometric contractions and seven (77.8%) used 4 to 5 seconds (24-26, 70, 82, 84, 85). For the rest time, five studies (71.43%) reported 10 to 30 seconds (24, 25, 82-84), and two (28.58%) 1 to 2 minutes between the trials (27, 70). Table 4 shows the data of the studies that examined the strength of other UL muscles, but the three studies that did not
describe the subjects’ positioning or data collection protocol were not included. Most studies, 11 (73.3%), performed bilateral measures (25, 27, 46-48, 55, 59, 76, 82, 83, 86) and four (26.7%) unilateral (26, 70, 84, 85), three of the paretic hand.

Regarding the positioning of the dynamometers, two studies on trunk assessment reported that the device was placed in the lower portion of the jugular notch for the anterior trunk flexors, and in the lateral lower portion of the acromion for the lateral trunk flexors (14, 42). For the assessment of handgrip strength, the device was positioned between the palm of the hand and the fingers (12, 65) with its handle on the second position (70, 77). For the evaluation of pinch strength, the end portion of the device was placed between the thumb and the finger involved in the assessed pinch (29, 30, 81). Studies of other UL muscles reported that the device was positioned perpendicular to the evaluated segment in its distal region, and stabilization was provided to the proximal region (24-27, 55, 63, 70, 76, 82-85).

Out of the 58 included studies, nine reported the psychometric properties of the portable dynamometers. In these studies, the strength of the trunk (42) and some UL muscles (24-26, 63, 83-85), including handgrip (9, 28, 63), were evaluated, as shown in Table 5. All studies assessed the reliability, five reported test-retest (9, 24, 25, 28, 63), one intra-rater (85), two inter-rater (26, 42), and one intra- and inter-session reliabilities (83). All studies that investigated the psychometric properties of the dynamometer, except one (28), reported the magnitudes of the correlation coefficient values above 0.80, indicating excellent reliability (87).

Table 2 - Data extraction of the 24 studies which assessed handgrip strength in subjects with stroke with portable dynamometers and provided information regarding the subject’s positioning or the data collection protocol

<table>
<thead>
<tr>
<th>Study</th>
<th>Subject position</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunderland et al. (12)</td>
<td>Sitting, hand on the thigh</td>
<td>Three alternate trials</td>
</tr>
<tr>
<td>Jones et al. (60)</td>
<td>Upper limb extended next to the body</td>
<td>Three trials</td>
</tr>
<tr>
<td>Van Deusen et al. (61)</td>
<td>NI</td>
<td>Three trials</td>
</tr>
<tr>
<td>Robinson et al. (62)</td>
<td>Sitting, elbow extended</td>
<td>Two trials, contraction of 6s</td>
</tr>
<tr>
<td>Bohannon (63)</td>
<td>Sitting, upper limb extended next to the body, elbow flexed to 90°</td>
<td>NI</td>
</tr>
<tr>
<td>Marque et al. (64)</td>
<td>Upper limb down and away from the body</td>
<td>Three trials, rest interval of 5min</td>
</tr>
<tr>
<td>Boissy et al. (9)</td>
<td>Sitting, shoulder abducted to 30° and flexed to 0°, elbow flexed to 90°</td>
<td>Three trials, rest interval of 2min</td>
</tr>
<tr>
<td>Bhakta et al. (65)</td>
<td>Sitting, elbow flexed to 90° and elbow extended</td>
<td>Three trials, contraction of 10s</td>
</tr>
<tr>
<td>Merians et al. (66)</td>
<td>NI</td>
<td>One trial</td>
</tr>
<tr>
<td>Pandyan et al. (67)</td>
<td>Elbow flexed to 90°, minimum elevation of the shoulder</td>
<td>Three trials, rest interval of 15s</td>
</tr>
<tr>
<td>Hammer et al. (28)</td>
<td>Sitting, feet resting, hand and forearm stabilized, elbow flexed to 90° shoulder flexed to 10° and abducted to 10°</td>
<td>Three trials, contraction of 10s, rest interval ≥ 30s</td>
</tr>
<tr>
<td>Dijkerman et al. (68)</td>
<td>Elbow flexed to 90°</td>
<td>Three alternate trials</td>
</tr>
<tr>
<td>Broeren et al. (69)</td>
<td>NI</td>
<td>Contraction of 10s</td>
</tr>
</tbody>
</table>

(To be continued)
Table 2 - Data extraction of the 24 studies which assessed handgrip strength in subjects with stroke with portable dynamometers and provided information regarding the subject's positioning or the data collection protocol

<table>
<thead>
<tr>
<th>Study</th>
<th>Subject position</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohannon (70)</td>
<td>Sitting, shoulder adducted, elbow flexed to 90°, wrist extended between 0° to 30°, ulnar deviation between 0° to 15°</td>
<td>One trial</td>
</tr>
<tr>
<td>Suputtitada et al. (71)</td>
<td>NI</td>
<td>Three trials</td>
</tr>
<tr>
<td>Kamper et al. (4)</td>
<td>NI</td>
<td>Two trials</td>
</tr>
<tr>
<td>Wolf et al. (72)</td>
<td>Sitting, elbow flexed to 90°</td>
<td>Three trials, contraction of 3s</td>
</tr>
<tr>
<td>Restemeyer et al. (73)</td>
<td>NI</td>
<td>Three trials</td>
</tr>
<tr>
<td>Ploughman et al. (31)</td>
<td>Sitting, elbow flexed to 90°, without trunk support</td>
<td>Three trials</td>
</tr>
<tr>
<td>Gosselin et al. (74)</td>
<td>NI</td>
<td>Two alternate trials</td>
</tr>
<tr>
<td>Kang et al. (75)</td>
<td>NI</td>
<td>Three trials</td>
</tr>
<tr>
<td>Beebe et al. (76)</td>
<td>Sitting, upper limb next to the body, elbow flexed to 90°, wrist slightly extended</td>
<td>Three trials</td>
</tr>
<tr>
<td>Bohannon (77)</td>
<td>Sitting, shoulder adducted, elbow flexed to 90°</td>
<td>One trial</td>
</tr>
<tr>
<td>Burdea et al. (78)</td>
<td>NI</td>
<td>Three trials</td>
</tr>
</tbody>
</table>

Note: NI = not informed. The assessment of strength was performed with isometric contractions in all studies.

Table 3 - Data extraction of the 15 studies which assessed pinch strength in subjects with stroke with portable dynamometers

(To be continued)
Table 3 - Data extraction of the 15 studies which assessed pinch strength in subjects with stroke with portable dynamometers

<table>
<thead>
<tr>
<th>Study</th>
<th>Pinch type</th>
<th>Subjects' position</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lang et al. (54)</td>
<td>Palmar</td>
<td>NI</td>
<td>NI</td>
</tr>
<tr>
<td>Ploughman et al. (31)</td>
<td>Lateral</td>
<td>Sitting, elbow flexed to 90°, without trunk support</td>
<td>Three trials</td>
</tr>
<tr>
<td>Beebe et al. (55)</td>
<td>Palmar</td>
<td>NI</td>
<td>NI</td>
</tr>
<tr>
<td>Klaiput et al. (81)</td>
<td>Lateral and pulp-to-pulp</td>
<td>NI</td>
<td>Three trials, rest interval of 15s</td>
</tr>
<tr>
<td>Beebe et al. (76)</td>
<td>Palmar</td>
<td>Sitting, upper limb next to the body, elbow flexed to 90°, wrist slightly extended</td>
<td>Three trials</td>
</tr>
<tr>
<td>Connelly et al. (57)</td>
<td>Lateral and palmar</td>
<td>NI</td>
<td>NI</td>
</tr>
<tr>
<td>Burdea et al. (78)</td>
<td>Pulp-to-pulp, lateral and palmar</td>
<td>NI</td>
<td>Three trials</td>
</tr>
<tr>
<td>Triandafliou et al. (58)</td>
<td>Lateral</td>
<td>NI</td>
<td>NI</td>
</tr>
</tbody>
</table>

Note: NI = not informed. The assessment of muscular strength was performed with isometric contraction for all studies.

Table 4 - Data extraction of the 14 studies which assessed the upper limb strength in subjects with stroke with portable dynamometers and provided information regarding the subject's positioning or the data collection protocol

(To be continued)
Table 4 - Data extraction of the 14 studies which assessed the upper limb strength in subjects with stroke with portable dynamometers and provided information regarding the subject's positioning or the data collection protocol.

(To be continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Muscular group</th>
<th>Subjects' position</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riddle et al. (83)</td>
<td>Wrist and elbow flexors/ extensors; shoulder internal/external rotators</td>
<td>Supine (24)</td>
<td>Three trials, contractions of 4 to 6s, rest intervals of 10 to 30s</td>
</tr>
<tr>
<td>Bohannon et al. (84)</td>
<td>Elbow flexors</td>
<td>Supine, upper limb extended, 90° of elbow flexion, 30° of shoulder abduction, forearm at supine position</td>
<td>Four trials, contractions of 4 to 5s, rest intervals of 10s</td>
</tr>
<tr>
<td>Bohannon et al. (85)</td>
<td>Elbow flexors</td>
<td>Supine, elbow flexed at 90°; shoulder stabilization</td>
<td>Two trials, contractions of 4 to 5s</td>
</tr>
<tr>
<td>Bohannon (63)</td>
<td>Elbow flexors and shoulder abductors</td>
<td>Supine, elbow flexed at 90° and shoulder at 45°</td>
<td>NI</td>
</tr>
<tr>
<td>Bohannon et al. (86)</td>
<td>Wrist extensors, elbow flexors, and shoulder abductors</td>
<td>Supine, tested segment without the interference of gravity and in the middle of the range of motion, wrist extension: shoulder in neutral, elbow flexed at 90°; wrist in neutral and fingers relaxed. Stabilization: distal forearm; elbow flexion: shoulder in neutral, elbow flexed at 90°; forearm in supine. Stabilization: upper arm or shoulder; shoulder abduction: shoulder abducted at 45° and elbow extended. Stabilization: top of shoulder</td>
<td>NI</td>
</tr>
<tr>
<td>Andrews et al. (27)</td>
<td>Wrist extensors, elbow flexors, and shoulder abductors</td>
<td>Supine, tested segment without the interference of gravity, wrist extensors: shoulder in neutral, elbow flexed at 90°, and fingers relaxed. Stabilization: distal forearm, elbow flexors: elbow flexed at 90°, forearm in supine. Stabilization: upper arm or shoulder; elbow extensors: elbow flexed at 90°. Stabilization: anterior part of the shoulder or arm; shoulder abductors: shoulder abducted at 45° and elbow extended. Stabilization: shoulder</td>
<td>Two trials, contractions of 3 to 4s, rest intervals of 1 to 2min</td>
</tr>
<tr>
<td>Byl et al. (47)</td>
<td>Wrist extensors, elbow flexors</td>
<td>Supine or sitting; wrist extensors: arm on the table, forearm in prone, and wrist in neutral. Stabilization: distal forearm, elbow flexors: elbow flexed at about 90°, forearm in supine. Stabilization: under the elbow, shoulder flexors: shoulder flexed and internally rotated, elbow flexed and forearm in supine. Stabilization at the trunk</td>
<td>NI</td>
</tr>
<tr>
<td>Bohannon (70)</td>
<td>Elbow flexors and shoulder abductors</td>
<td>Supine: elbow flexors: elbow flexed at 90° and forearm in supine; shoulder abductors: shoulder abducted at 45° and elbow extended</td>
<td>One trial, contractions of 4 to 5s, rest intervals of 1min</td>
</tr>
</tbody>
</table>
Table 4 - Data extraction of the 14 studies which assessed the upper limb strength in subjects with stroke with portable dynamometers and provided information regarding the subject’s positioning or the data collection protocol

<table>
<thead>
<tr>
<th>Study</th>
<th>Muscular group</th>
<th>Subjects’ position</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beebe et al. (55)</td>
<td>Index finger, wrist, elbow, and shoulder flexors and extensors</td>
<td>Supine, tested segment without the interference of gravity; forefinger flexors/ extensors: NI; wrist flexors: NI; wrist extensors: shoulder in neutral, elbow flexed at 90°, and fingers relaxed. Stabilization: distal forearm; elbow flexors: elbow flexed at 90°, forearm in supine. Stabilization: anterior part of the shoulder or arm; shoulder flexors: shoulder flexed at 90° and elbow extended. Stabilization: axillary region, shoulder extensors: shoulder flexed at 90°, elbow flexed. Stabilization: shoulder</td>
<td>NI</td>
</tr>
<tr>
<td>Beebe et al. (76)</td>
<td>Index finger, wrist, elbow, and shoulder flexors and extensors</td>
<td>Same as above</td>
<td>NI</td>
</tr>
</tbody>
</table>

Note: NI = not informed. The assessment of strength was performed with isometric contractions in all studies.

Few studies reported the use of visual or verbal feedback to motivate the participants during the performance of maximal isometric contractions: only two studies that evaluated the strength of the UL muscles (26, 84) reported some stimulus. The demonstration and familiarization with the procedures were also rarely reported: four studies related to UL muscles (24-26, 82), one related to handgrip (28), and one related to pinch strength (81) reported that demonstration procedures were carried out and familiarization occurred in only one UL study (27) and two of handgrip (28, 62).

Table 5 - Results of the nine studies which assessed the measurement properties of the portable dynamometers

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>Muscular group</th>
<th>Measurement property</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohannon (24)</td>
<td>n = 16, aged between 17 and 82 years</td>
<td>Wrist and elbow flexors/extensors, shoulder internal/external rotators and abductors/adductors</td>
<td>Test-retest reliability</td>
<td>0.95 ≤ r ≤ 0.99</td>
</tr>
<tr>
<td>Bohannon et al. (25)</td>
<td>n = 42, male and female, ages between 22 e 84 years, time since the onset of stroke between 9 and 233 days</td>
<td>Wrist extensors; elbow flexors/extensors; shoulder internal/external rotators, adductors, and flexors/extensors</td>
<td>Test-retest reliability</td>
<td>r² ≥ 0.88</td>
</tr>
<tr>
<td>Bohannon et al. (26)</td>
<td>n = 21, male and female</td>
<td>Wrist extensors, elbow flexors, and shoulder external rotators</td>
<td>Inter-rater reliability</td>
<td>0.88 ≤ r ≤ 0.94</td>
</tr>
</tbody>
</table>
Table 5 - Results of the nine studies which assessed the measurement properties of the portable dynamometers

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>Muscular group</th>
<th>Measurement property</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riddle et al. (83)</td>
<td>n = 31, mean age of 54.6 ± 18.1 years, time since the onset of stroke between 5 and 150 days</td>
<td>Wrist flexors and extensors, elbow flexors and extensors, and shoulder internal and external rotators</td>
<td>Test-retest and inter-rater reliabilities</td>
<td>Test-retest $0.91 \leq r \leq 0.99$; ICC: 0.93-0.98 (r_s) $0.92 \leq r \leq 0.98$; ICC: 0.90-0.98</td>
</tr>
<tr>
<td>Bohannon et al. (85)</td>
<td>n = 23</td>
<td>Elbow flexors</td>
<td>Inter-rater reliability</td>
<td>ICC = 0.99</td>
</tr>
<tr>
<td>Bohannon (63)</td>
<td>n = 10, male and female, ages between 46 and 81 years, time since the onset of stroke between 2 and 10 days</td>
<td>Elbow flexors, shoulder abductors, and grip strength</td>
<td>Test-retest reliability</td>
<td>$0.95 \leq r_s \leq 0.96$</td>
</tr>
<tr>
<td>Bohannon et al. (42)</td>
<td>n = 11 male and female, mean age of 67.4 ± 10.2 years, time since the onset of stroke of 14.2 ± 11.5 days</td>
<td>Anterior and lateral trunk flexors</td>
<td>Inter-rater reliability</td>
<td>ICC = 0.80-0.82</td>
</tr>
<tr>
<td>Boissy et al. (9)</td>
<td>n = 15, male and female, ages between 29 and 65 years</td>
<td>Grip</td>
<td>Test-retest reliability</td>
<td>ICC = 0.91</td>
</tr>
<tr>
<td>Hammer et al. (28)</td>
<td>n = 18, male and female, ages between 38 and 63 years, time since the onset of stroke between 2 and 25 weeks</td>
<td>Grip</td>
<td>Test-retest reliability</td>
<td>$C_r = 48.2$ N</td>
</tr>
</tbody>
</table>

Note: $r = Pearson$ correlation coefficients; $r_s^2 = coefficients$ of determination; ICC = Intra-class correlation coefficient; $r_s = Spearman$ correlation coefficients; $C_r = reproducibility$ coefficient. The assessment of strength was performed with isometric contractions in all studies.

Discussion

The aim of this study was to investigate whether there were standardized protocols for the use of portable dynamometers for the assessment of strength of the trunk and UL muscles, including handgrip and pinch strength in subjects with stroke, as well as to verify which measurement properties were investigated. The majority of the studies assessed handgrip, followed by elbow flexors, wrist extensors, elbow extensors and lateral pinch strength. In addition, adults and elderly subjects at the acute, sub-acute, and chronic phases after stroke were included, thus covering a large sample variability. Most studies described the positioning of the subjects and/or the data collection protocols, however, without standardized procedures. The only investigated measurement property was reliability, with excellent results in most studies.

The muscular groups of the UL, which were evaluated with portable dynamometry are often impaired in stroke subjects (12, 25, 27) and are important for the performance of functional activities (7, 54, 85). However, despite the extensive search, only three studies related to the strength of the trunk muscles in stroke.
subjects with portable dynamometry, but they did not include subjects at the chronic phase nor evaluated the strength of the trunk extensor and rotator muscles.

Although weakness of the trunk muscles were already identified in stroke (14, 42, 88, 89), possibly the strength of the trunk muscles has been poorly evaluated, because the weakness is most remarkable in the upper and lower limb muscles, especially those contralateral to the side of the brain injury (14, 42). The nerve supply of the trunk muscles provided by both cerebral hemispheres (90), which may justify less remarkable impairment of this segment, compared to limbs (15). Moreover, according to Bohannon (14), the recovery of the strength of the trunk muscles follows the time of the onset of stroke (14), and therefore, impairments of the trunk muscles are most evident at the acute and sub-acute phases after stroke (15). In addition, according to Bohannon (14), the greatest recovery of strength after stroke was found for the anterior trunk flexors, which is usually the most affected muscular group. Possibly, these are the reasons that the studies that assessed the strength of the trunk muscles included subjects at the acute phases and the assessment of anterior trunk flexors. Within this context, it is important to note that subjects at the chronic phases also demonstrate weakness of the trunk muscles, which is associated with functional limitations (15, 91). Furthermore, this weakness is observed not only on the anterior trunk flexors, but also on the extensors and rotators (88, 89).

All trunk muscles play an important role in supporting the body during antigravity postures and in stabilizing the proximal body during functional movements of the limbs (92). Adequate function of these muscles is crucial for balance, transfers, gait, and other functional activities (15), providing stability and mobility for the performance of daily tasks (93). Therefore, the assessment of the strength of the trunk muscles is essential (15, 94) for all subjects affected by stroke, because they have significant impairments of these muscles (15, 42).

Despite the widespread use of portable dynamometry for the assessment of UL muscles, including handgrip and pinch strength, only nine studies investigated its measurement properties with stroke subjects. All studies reported data related to reliability, which was found to be excellent in most of them. Test-retest or intra-rater reliability was the most investigated property, probably by the fact that repeated measures by the same examiner are easily obtained, and are commonly used within clinical settings, where the measures of the same professional are compared before and after an intervention, for example. Since the results indicated reliable measures when they are performed by the same examiner, the changes observed in measures performed by the same examiner before and after an intervention, for example, can be attributed to changes obtained with the performed intervention (87).

Most of the studies which investigated reliability, calculated the Pearson correlation coefficients to correlate the measurements obtained in different sessions (defined by the authors as intra-rater or test-retest reliability) or by different examiners (inter-rater reliability). However, this statistical test only evaluates the degree of associations between the measures, without considering the levels of agreement and, therefore, it is not considered the most adequate method for the assessment of reliability (83, 87). On the other hand, intra-class correlation coefficients (ICCs) are mostly recommended to assess reliability, since they reflect both the associations and the agreement between two or more measures (83, 87). All four studies that used ICCs, reported coefficients 0.80, which are indicative of excellent reliability.

Another important issue to be considered is that the terminology used in the studies to specify the types of similar reliability varied: test-retest, intra-, inter-session, and intra-rater reliability. Test-retest reliability is used to determine whether an instrument or test provides consistent measures, keeping all other measurement conditions as constant, as possible (87). In the case of portable dynamometry assessment, in which the resistance exerted by the examiners is critical, it is necessary to guarantee that their measures are reliable. As pointed out by Portney and Watkins (87), “in a test-retest situation, when a rater’s skill is relevant to the accuracy of the test, intra-rater reliability and test-retest reliability are essentially the same estimate. The effects of rater and the test cannot be separated out”.

The results of this review found that validity was not investigated for portable dynamometers with stroke subjects. Despite the fact that portable dynamometers are devices with adequate face validity for the measurement of strength, studies were found that compared the measurements provided by the portable dynamometers with those obtained with isokinetic dynamometers, which are considered the gold standard for the assessment of strength (37). These studies,
which evaluated various muscular groups and subjects with different health conditions, reported good concurrent criterion-related validity for the portable dynamometry. However, they did not assessed the strength of the UL and trunk muscles nor stroke subjects (37). Considering that the subjects’ characteristics could influence the measurements obtained with these devices, such as difficulty in understanding the commands (2) and recruiting motor units for the generation of strength (95), it becomes necessary to investigate the concurrent criterion-related validity of the portable dynamometry for the assessment of these muscular groups with this population.

Amongst the muscular groups commonly evaluated with portable dynamometers in stroke subjects, the measurement properties of the pinch strength were not investigated. According to Araújo et al. (35), pinch strength measures are related to dexterity and accuracy of the movements. Faria-Fortini et al. (7) found that impairments of the lateral pinch strength in subjects with stroke were associated with deficits in functional activities. Thus, the measurement properties of the portable dynamometers for the assessment of strength in this population should be investigated. To recommend the use of an instrument in a given population, such as stroke subjects, for the assessment of a specific muscular group, it is necessary that its measurement properties be established, considering the context of interest, such as the population and/or muscular groups, for example. The validity and reliability of a method and/or a measurement instrument is not guaranteed if they are used within contexts, which are different from those for which they were developed (87, 96).

Most of the studies performed bilateral measures of the strength of the UL, including handgrip strength. The loss of strength of the paretic side is a common impairment in stroke subjects. However, weakness is also commonly observed on the non-paretic side (60, 86). Due to the decrease in overall strength in subjects affected by stroke, it is necessary that these measures are obtained bilaterally (86, 97).

The positioning for the assessment of handgrip and pinch strength, in most studies, followed the recommendation of the American Society of Hand Therapists, with the participant seated, shoulder adducted, elbow flexed to 90°, forearm in neutral position, wrist between 0° and 30° of extension, and 0° and 15° of ulnar deviation (29-31, 63, 70, 72, 76, 77). Most studies that evaluated the trunk muscles, handgrip, and pinch strength adopted the sitting position, while the supine position was further used to evaluate the muscles of the other UL muscles. Most studies that evaluated the strength of other UL muscles placed the limb in a position to avoid the influence of the gravity. The MMT, which is the most common method for the assessment of strength within clinical settings usually follows the position recommended by Kendall et al. (98). Only one study (47) cited the same position described by Kendall et al. (98) and did not avoid the influence of gravity to test the strength of the UL muscles. For the assessment of the trunk and UL muscles, the equipment was positioned perpendicular to the evaluated segment and in the case of the UL, in the distal extremity.

The contraction time, which was most used for the UL muscles varied from 4 to 5 seconds (14, 24-26, 70, 82, 84, 85); for the handgrip strength, it was about 10 seconds (28, 65, 69). Only one study regarding pinch strength described contraction time of 1 to 3 seconds (30), and for the trunk muscles, this time ranged from 3 to 5 seconds (14, 42). The time of maximum effort was also quite varied. However, most of the studies included in this review used 4 to 5 seconds, whose values can be used as references.

The rest interval also varied between the studies. The most widely used for the UL muscles was 10 to 30 seconds (24, 25, 82, 83) and for the handgrip strength was the alternate method (12, 68, 74). Mathiowetz (99) reported that it is not really necessary to extend the rest interval, because the differences between measurements with different rest interval are small. Trossman et al. (100) investigated the effect of rest interval between five trials and did not found significant differences between rest intervals of 60s, 30s, and 15s. Therefore, rest intervals of 15s seem to be sufficient to avoid effects of fatigue.

The scoring method most commonly used to analyze the maximal isometric strength in stroke subjects was the mean of three trials (9, 12, 24, 25, 60, 61, 65, 82, 83). Variations of the scoring were reported in healthy subjects, for example, the use of only one trial, the best value of two or three trials (101). Coldham et al. (101) evaluated handgrip strength in healthy subjects and in subjects who had undergone orthopedic surgery, and reported that the use of only one trial of maximum strength was appropriate, less painful, and as reliable as the mean or the best value of three trials. Similar studies in subjects with stroke are needed to determine if the mean of three trials is the best scoring method. However, none of the studies included in
this review compared different ways of scoring the measures provided by portable dynamometer (mean of two or three trials, or the value of a single trial).

Few studies reported procedures of demonstration (24-26, 28, 81, 82) and familiarization with the devices and/or with the data collection protocol (27, 28, 62) or provided stimulation for motivating the participants (26, 84) during data collection. These factors may influence the measurements of strength obtained with portable dynamometry. Consistent instructions for performing a standardized protocol could minimize the errors and promote better quality of the measures (33, 102). Considering stroke subjects, who show difficulties in achieving contractions, especially on the paretic side (70, 83) and in understanding (2), procedures related to demonstration, familiarization, and encouragement are essential to obtain adequate measures of strength.

Final considerations

Portable dynamometry has been used for the assessment of most muscular groups of the UL in stroke subjects, including handgrip and pinch strength, with large and varied samples. However, the same was not observed for the muscles of the trunk. Most studies provided some information regarding the subjects’ positioning and/or data collection protocol, however, without any standardization. Few studies investigated the measurement properties of the portable dynamometer and only reliability was reported, with adequate results in most of the studies. Few studies have reported procedures related to familiarization and/or motivation. No studies were found which investigated the reliability of portable dynamometer for the assessment of pinch strength, neither its validity in subjects with stroke. Thus, there are still important gaps that limit adequate scientific foundation for the clinical decision making regarding the use of portable dynamometer for the assessment of the strength of the UL and trunk muscles in individuals with stroke.

References

Assessment of the strength of the trunk and upper limb muscles in stroke subjects with portable dynamometry

Received: 10/23/2013
Recebido: 23/10/2013

Approved: 04/09/2014
Aprovado: 09/04/2014