Effect of radiotherapy on pulmonary function and fatigue of women undergoing treatment for breast cancer

Efeito da radioterapia na função pulmonar e na fadiga de mulheres em tratamento para o câncer de mama

Efecto de la radioterapia en la función pulmonar y en la fatiga de mujeres en tratamiento para el cáncer de mama

Dayane Evellyn dos Santos¹, Mariana Tirolli Rett², Andreza Carvalho Rabelo Mendonça², Thaysa Samanta Bezerra¹, Josimari Melo DeSantana², Walderi Monteiro da Silva Júnior²

ABSTRACT | This study compared the pulmonary function and fatigue in patients before and after adjuvant radiotherapy (RT) and correlated the pulmonary function with the radiotherapy dose and fatigue. A longitudinal and observational study was conducted involving 20 women. Pulmonary function was evaluated by digital lung spirometry (ClementClarke®) and manometry (GlobalMed®, model MVD 300) and fatigue was analyses by the Functional Assessment of Cancer Therapy Fatigue (FACT-F). All evaluations were conducted before the first RT session and up to one week after this treatment. Statistical analyses were conducted by the Wilcoxon Signed Rank Test and Spearman, considering p<0.05. There was significant reduction at spirometry parameters: forced vital capacity (23.52%), forced expiratory volume in the first second (26.23%), peak expiratory flow (10.12%) (p=0.001). Maximal expiratory pressure (25.45%) and maximal inspiratory pressure (32.92%) also showed significant reduction at manometry. There was a significant reduction on physical well-being and functional well-being and a significant increase in fatigue evaluated by the FACT-F (p=0.001). There was no correlation between pulmonary function, radiation dose and fatigue. Short-term effects of radiotherapy showed reduction of pulmonary function, but the values were considered similar to normal. There was a significant increase in fatigue, and significant decrease of physical well-being and functional well-being.

Keywords | breast neoplasms; radiotherapy; respiratory function tests; radiation effects; fatigue; physical therapy.

RESUMO | O presente estudo comparou a função pulmonar e a fadiga de mulheres antes e após a radioterapia (RT) adjuvante para tratamento do câncer de mama, e correlacionou a função pulmonar com a dose de radiação e fadiga. Foi conduzido um estudo observacional longitudinal envolvendo 20 mulheres. A função pulmonar foi avaliada pela espirometria (ClementClarke®) e manovacuometria (GlobalMed®, modelo MVD 300), e a fadiga pelo Functional Assessment of Cancer Therapy Fatigue (FACT-F). Todas as avaliações foram realizadas antes da primeira sessão e uma semana após o término da RT adjuvante. Para a análise estatística foram utilizados os testes Wilcoxon Signed Rank Test e correlação de Spearman, adotando-se nível de significância p<0.05. Na espirometria, encontrou-se redução significativa da capacidade vital forçada (23.52%), do volume expiratório forçado no primeiro segundo (26.23%) e do pico de fluxo expiratório (10.12%) (p=0.001). As pressões expiratórias e inspiratórias máximas também diminuíram significativamente (25.45% e 32.92%, respectivamente). Observou-se diminuição significativa do bem-estar físico e do bem-estar funcional, e um
aumento significativo de fatiga no FACT-F (p<0,001). Não foram observadas correlações entre as variáveis da função pulmonar com a dose de radiação e fatiga. Em curto prazo, a RT promoveu redução na função pulmonar, mas a mesma permaneceu próxima à normalidade para a amostra estudada. Observou-se aumento significativo da fatiga e diminuição dos escores dos domínios bem-estar físico e funcional.

Descritores | neoplasias da mama; radioterapia; testes de função respiratória; efeitos de radiação; fatiga; fisioterapia.

RESUMEN | El presente estudio comparó la función pulmonar y la fatiga de mujeres antes y después de la radioterapia (RT) como ayuda para el tratamiento del cáncer de mama, y se correlacionó la función pulmonar con la dosis de radiación y fatiga. Fue realizado un estudio observacional longitudinal involucrando 20 mujeres. La función pulmonar fue evaluada por espirometría (ClementClarke®) y manovacuometría (GlobalMed®, modelo MVD 300) y, la fatiga fue evaluada por la Functional Assessment of Cancer Therapy Fatigue (FACT-F). Todas las evaluaciones fueron realizadas antes de la primera sesión y una semana después del término de la RT. Para el análisis estadístico fueron utilizados los tests Wilcoxon Signed Rank Test y correlación de Spearman, adoptando un nivel de significancia p<0,05. En la espirometría, se encontró reducción significativa de la capacidad vital forzada (23,52%), del volumen espiratorio forzado en el primer segundo (26,23%) y del peak de flujo espiratorio (1012%) (p=0,001). Las presiones espiratorias e inspiratorias máximas también disminuyeron significativamente (25,45% y 32,92%, respectivamente). Se observó disminución significativa del bienestar físico y del bienestar funcional, y un aumento significativo de la fatiga en el FACT-F (p=0,001). No fueron observadas correlaciones entre las variables de la función pulmonar con la dosis de radiación y fatiga. En corto plazo, la RT promueve la reducción de la función pulmonar, pero los valores son considerados similares a los normales. Se observó aumento significativo de la fatiga y disminución de los puntajes en los dominios de bienestar físico y funcional.

METHODOLOGY

An observational and longitudinal study was performed from August to October 2011. Women submitted to mastectomy and quadrantectomy, with axillary lymphadenectomy and prescription for adjuvant RT were included. The excluded patients were those submitted to bilateral surgery, breast reconstruction or placement of breast prosthesis, with history of pneumopathy (lung cancer, pulmonary emphysema, chronic obstructive pulmonary disease, bronchiectasis), concomitant chemotherapy and neoadjuvant RT. Twenty-five women were eligible for the study, however 5 were excluded for interrupting radiotherapy, so 20 women remained.

RT was performed from five to six weeks (depending on the dose) with daily applications. The irradiated...
regions were: breast region (or plastron), and the axillary region and clavicular fossa with lower doses.

Pulmonary function was assessed by the spirometry (ClementClark®) and manovacuometry tests (GlobalMed®, MVD 300 model), which measure capacities and volumes, and respiratory muscle strength, respectively.

Spirometry was conducted according to the criteria by the American Thoracic Society18. The forced vital capacity (FVC) was assessed in liters (L), the forced expiratory volume (FEV1), in L, the FEV1/FVC ratio, in %, and the peak expiratory flow (PEF), in liters per minute (L/min). For this test, patients were told to perform maximal inspiration, until the full lung capacity (FLC), followed by a continuous and forced expiration, until the residual volume (RV), in the mouthpiece of the device. The obtainment of three acceptable (with variation of PEF values lower than 10%) and reproducible curves (with the two highest values of FEV1 and FVC, with variation lower than 0.15 L) were considered, adopting the highest values measured from each variable.

Manovacuometry followed the procedure proposed by Neder et al.19. A deep and prolonged inspiration was required, until FLC, followed by forced expiration on the mouthpiece of the device to obtain the maximal expiratory pressure (EPmax). For the maximal inspiratory pressure (IPmax), a forced expiration was requested, until RV, followed by deep inspiration. Three EPmax and IPmax maneuvers were performed with a one minute interval. The highest obtained value was registered, considering the performance of three acceptable and reproducible maneuvers, with the maximum of 10% of difference between them.

To assess fatigue, the Functional Assessment of Cancer Therapy Fatigue (FACT-F) was used, which consists of 40 items, being 27 related to the Functional Assessment of Cancer Therapy-General (FACT-G) and 13 specific items about fatigue20. The questions in FACT-G are distributed into domains about physical well-being, social/family well-being and functional well-being (each with 7 items and a 0 to 28 score) and emotional well-being (7 items and a 0 to 24 score). In these domains, the higher the score, the better the assessed well-being. The fatigue subscale has a 0 to 52 score, and the higher the score, the lower the fatigue. There is a total score corresponding to the sum of domains and the fatigue subscale, ranging from 0 to 160, and the higher the score, the lower the fatigue.

All evaluations were performed by the same evaluator in two moments: before the first RT session and a week after its conclusion. The study was approved by the Research Ethics Committee of Universidade Federal de Sergipe (UFS) – CAAE 0090.0.107.000-11. The statistical analysis was conducted by BioEstat 5.0 and the Wilcoxon Signed Rank test and Spearman’s correlation test were used, with a p<0.05 significance level.

RESULTS

The general, clinical and surgical characteristics of the 20 women are described in Table 1. Only one had worked in an environment with dust, two were smokers and three had smoked for about four years.

Spirometry showed a significant decrease in FVC (23.52%), FEV1 (26.23%) and PEF (10.12%), (p<0.001). The FEV1/FVC ratio did not present significant changes (p=0.430) (Table 2).

RESULTS

The general, clinical and surgical characteristics of the 20 women are described in Table 1. Only one had worked in an environment with dust, two were smokers and three had smoked for about four years.

Spirometry showed a significant decrease in FVC (23.52%), FEV1 (26.23%) and PEF (10.12%), (p<0.001). The FEV1/FVC ratio did not present significant changes (p=0.430) (Table 2).

Table 1. General, clinical and surgical characteristics (n=20)

Age (years)	53.5±11.22
BMI (kg/m²)	26.47±3.41
Surgical treatment	10 (50%)
Radical mastectomy	Quadrantectomy
Time between surgery and RT (months)	5.9±2.8
Radiotherapy	1867.5±23.22
Daily dose (cGy)	2054±805.92
Duration (days)	27±2.1

BMI: body mass index; kg/m²: kilogram/meter²; RT: radiotherapy; cGy: centigrays.

Table 2. Comparison of spirometry before and after radiotherapy (n=20)

<table>
<thead>
<tr>
<th>Spirometry</th>
<th>Before</th>
<th>After</th>
<th>% reduction</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (L)</td>
<td>2.56±0.38</td>
<td>1.95±0.37</td>
<td>23.52±5.98</td>
<td>0.001*</td>
</tr>
<tr>
<td>FEV1 (L)</td>
<td>2.04±0.37</td>
<td>1.50±0.31</td>
<td>26.23±10.15</td>
<td>0.001*</td>
</tr>
<tr>
<td>PEF (L/min)</td>
<td>315.05±26.45</td>
<td>282.25±20.34</td>
<td>10.12±6.32</td>
<td>0.001*</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>76.05±3.73</td>
<td>72.20±3.73</td>
<td>0.7±7.53</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Reduction 100(final - initial)/initial; FVC: forced vital capacity; FEV1: forced expiratory volume; PEF: peak expiratory flow; L: liter; L/min: liter/minute; *p<0.05, comparison before and after radiotherapy
Significant reduction in respiratory muscle strength was found: EPmax was initially 73±12.47, and after RT, 55±7.90 cmH$_2$O, which is similar to a 25.45% reduction. IPmax went from 69.50±10.41 to 46.25±5.32 cmH$_2$O, corresponding to a 32.92% reduction (p=0.001) (Figure 1).

The significant aggravation of the physical well-being was observed, decreasing from 22.45±5 to 16.75±5.5, as well as of the functional well-being, from 17.35±5.5 to 14.95±5.2 and the fatigue subscale, from 46.1±4.9 to 26.1±6.8 (p=0.001) (Figure 2).

The total FACT-F score also presented significant reduction, from 114.70±12.60 to 85.10±14.00 (p=0.001). No significant correlation was found between the pulmonary function after RT and the total radiation dose, with the fatigue subscale and with the total FACT-F score (Table 3).

DISCUSSION

A reduction in the main pulmonary function measures was observed (FVC, FEV1, EPmax and IPmax), as well as the aggravation of the physical and functional well-being and fatigue. Despite the decreased pulmonary function and the reduction of more than 20% of FVC and FEV1, the values remained within normality, according to weight, age and height of the studied sample18,19. Changes in lung capacity and volume are expected after RT$^{11,21-25}$, since there are potential risks of damaging the pulmonary parenchyma, losing type ii pneumocytes, losing surfactant and edema in the basement membrane26. But there is also the possibility that the patient can remain asymptomatic or never present any changes, be it in the parenchyma or in the pulmonary function, due to the “compensation in relation to the health lung”, which did not receive radiation24.

In the short term, the effects of RT did not cause an impact on the pulmonary function, even with the decrease of some spirometry and manovacuometry parameters, maybe because of the radiation dose, or the short follow-up time, or even because of the “compensation of the health lung”. In the study by Schettino, Jotta e Cassali25, the authors used the same instruments to assess pulmonary function, but they did not find any changes immediately after RT. However, this study involved only ten women.

More damage in the pulmonary function and in the capacity of alveolar diffusion is demonstrated by studies

Table 3. Correlation of pulmonary function values (spirometry and manovacuometry) after radiotherapy with the total radiotherapy dose, the fatigue subscale score and the total score of the Functional Assessment of Cancer Therapy Fatigue (n=20)

<table>
<thead>
<tr>
<th>Pulmonary function</th>
<th>Total RT dose</th>
<th>Fatigue subscale score</th>
<th>Total FACT-F score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p value</td>
<td>r</td>
</tr>
<tr>
<td>FVC</td>
<td>-0.36</td>
<td>0.11</td>
<td>-0.07</td>
</tr>
<tr>
<td>FEV1</td>
<td>0.20</td>
<td>0.37</td>
<td>-0.14</td>
</tr>
<tr>
<td>PEF</td>
<td>-0.28</td>
<td>0.21</td>
<td>-0.09</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>-0.29</td>
<td>0.90</td>
<td>-0.16</td>
</tr>
<tr>
<td>EPmax</td>
<td>-0.41</td>
<td>0.17</td>
<td>-0.32</td>
</tr>
<tr>
<td>IPmax</td>
<td>-0.32</td>
<td>0.16</td>
<td>-0.22</td>
</tr>
</tbody>
</table>

socialization, recreational activities and in the global physical conditioning.

Even though there have been correlations between pulmonary function and fatigue, the reduction of values such as volume, capacities and respiratory muscle strength can also influence the appearance of fatigue. The symptoms of lack of energy, tiredness, and intolerance to effort can be a reflex of the RT itself, of psychological factors, of the need to sleep/rest during the day, and they can even be increased by the negative repercussions of RT on the respiratory function. Clinically, it is expected that when the pulmonary function is compromised, even if temporally or without great repercussions, the patients can experiment situations of indisposition or exhaustion.

The scores of the family and emotional well-being domains are in accordance with those of literature, when considering women who are being treated for breast cancer and did not present differences after RT. It is believed that these women have proper family support and receive support from their friends, at home and in their social environment, which justifies the lack of compromise in this aspect. Besides, they may work with strategies to face the disease, which does not compromise the emotional well-being.

Even though the values of capacities, volumes and respiratory muscle strength are within normality for the studied sample, and considering the spirometry as an important indicator of risk for the development of pulmonary diseases, the reduction of the assessed parameters confirms the potentially negative effect caused by RT, in the short term, on the pulmonary functional reserve. It is clear that these results should be considered important, since the life expectancy of women with breast cancer has increased, they have been adopting a more active life style, and due to the fact that this sample represents different women who, in the same age group, one day can be submitted to RT.

Even though there is no control group and even with the short follow-up, assessing fatigue is an important clinical parameter that reflects several physical, functional, emotional and family aspects. It is expected that these results can contribute with the Oncology services, with the professionals involved with rehabilitation and also with prevention or therapeutic therapies for the potential pulmonary lesions, fatigue and physical and functional damage, once RT is still part of the complementary treatment for breast cancer.
CONCLUSION

It was observed that, in the short term, RT promoted a negative impact on pulmonary function, a significant increase in fatigue and the compromise of physical and functional well-being. However, no significant correlations were observed between pulmonary function, total radiation dose and fatigue.

ACKNOWLEDGEMENTS

To the patients, to Fundação de Beneficência Hospital Círurgia, to the Ministry of Education, to Programa Especial de Inclusão em Iniciação Científica (PIIC/POSGRAP/PROEST/UFS) and Programa Institucional de Bolsas de Iniciação à Extensão (PIBIX).

REFERENCES