International equations overestimate the respiratory muscle strength in children and adolescents with Cystic Fibrosis

Equações internacionais superestimam a força muscular ventilatória em crianças e adolescentes com Fibrose Cística

Ecuaciones internacionales sobreestiman la fuerza muscular ventilatoria en niños y adolescentes con Fibrosis Quística

João Paulo Heinzmann-Filho¹, Mauro Henrique Moraes Vargas¹, Taila Cristina Piva¹, Fernanda Maria Vendrusculo¹, Leonardo Araújo Pinto¹, Paulo José Caudo Marostica², Márcio Vinicius Fagundes Donadio¹

Study conducted at the Cystic Fibrosis Outpatient Facility of Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) – Porto Alegre (RS), Brazil. ¹PUCRS – Porto Alegre (RS), Brazil. ²Universidade Federal do Rio Grande do Sul (UFRGS) – Porto Alegre (RS), Brazil.

ABSTRACT | The aim of the present study was to compare the results of standardization of ventilatory muscle strength data using three international reference values and one Brazilian reference in children and adolescents with cystic fibrosis (CF). This was a retrospective study, which included patients with CF aged 8 to 12 years and in regular followup at an outpatient facility. Demographic and anthropometric data were collected. All patients included in the sample should have had ventilatory muscle strength and lung function measured in the past 12 months. The standardization of the results was made using predicted values from each equation. Data were compared using one-way ANOVA. We included 24 patients, 62.5% males, with mean age of 10.5 ± 1.53 years, height 138.0 ± 0.08 cm, weight 34.6 ± 7.9 kg, FEV1 93.29 ± 29.02% and FVC 103.78 ± 26.12%. The maximum inspiratory (MIP) and expiratory (MEP) pressures (cmH2O) observed were 92.1 ± 22.8 and 98.9 ± 24.5, respectively. After standardization by the different equations, we found that the international reference tend to overestimate the findings. The Brazilian equation showed values significantly lower (p<0.05) for MIP and MEP compared to international reference equations, and these would consider MIP values above normal (>100%) in 91.6, 79.1, and 75.0% of the subjects and MEP in 66.6, 87.5 and 50%, respectively. The results of standardization of ventilatory muscle strength in children and adolescents with CF aged 8 to 12 years using international equations overestimate the values of maximal respiratory pressures.

Keywords | Muscle Strengthth; Respiratory Muscles; Cystic Fibrosis.

RESUMO | O objetivo deste estudo foi comparar os resultados da normalização dos dados de força muscular ventilatória utilizando-se três equações de referência internacionais e uma nacional em crianças e adolescentes com fibrose cística (FC). Estudo retrospectivo, no qual foram incluídos pacientes com FC, idade entre 8 e 12 anos e acompanhamento ambulatorial regular. Foram coletados dados demográficos e variáveis antropométricas. Todos os pacientes incluídos deveriam ter realizado teste de força muscular ventilatória e espirometria nos últimos 12 meses. A normalização dos resultados foi realizada utilizando-se as variáveis preditoras requeridas em cada equação estudada. Os dados foram comparados utilizando-se uma ANOVA de uma via. Foram incluídos 24 pacientes, 62,5% masculinos, média de idade 10.5±1.53 anos, estatura 138.0±0.08 cm, massa corporal 34.6±9.07 kg, VEF1 93.29±29.02% e CVF 103.78±26.12%. As pressões (cmH2O) inspiratória (PIMAX) e expiratória (PEMAX) máximas encontradas foram 92.1±22.8 e 98.9±24.5, respectivamente. Após a normalização pelas diferentes equações, demonstrou-se que as internacionais tendem a superestimar os achados para a nossa população. A equação nacional apresentou valores médicos previstos significativamente (p<0.05) menores para PIMAX e PEMAX em comparação com as equações internacionais, sendo que estas classificariam a PIMAX como acima do normal (>100%) em 916, 791, e 750% dos sujeitos e a PEMAX em 666, 875 e 50%, enquanto a equação nacional estimaria apenas 50.0 e 37.5% dos indivíduos, respectivamente. A normalização dos resultados de força muscular ventilatória em crianças e adolescentes entre 8 e 12 anos.
INTRODUCTION

Cystic fibrosis (CF) is a genetic progressive disease associated with impairment of the respiratory function\(^1\). The course of the disease is influenced by chronic inflammation of the airways and recurrent bacterial infections that predispose the patient to airflow limitation and change their respiratory system compliance, causing ventilatory muscle weakness\(^2\).

Many studies conducted with pediatric samples have shown contradictions in the assessment of ventilatory muscle strength, with results varying from decrease\(^3,4\) to increase\(^1,5\) in strength. Some papers report that hyperinflation combined with malnutrition may be a factor predisposing to ventilatory muscle weakening\(^4,6,7\). On the other hand, chronic cough and increase in ventilatory effort seem to favor muscle strength\(^5,8\).

In the last decade, some national studies assessing ventilatory muscle strength in CF patients\(^1,9,10\) also showed conflicting results.

Currently there are three international equations used for standardization of results in evaluations of ventilatory muscle strength of children under the age of 12\(^11-13\); however, the use of such equations may not reflect the actual ventilatory condition of patients, for they under- or overestimate the findings. Our study group has recently published reference values for ventilatory muscle strength in healthy preschool Brazilian children\(^14\). This study showed that international equations compared to local reference values overestimate the ventilatory muscle strength of healthy children and adolescents, suggesting that the standardization of findings in subjects with changes in the respiratory system may not reflect the actual conditions of these muscles.

Considering the wide range of differences in evidence regarding ventilatory muscle strength in CF patients and the usual use of international reference values for standardization of findings, we raised the hypothesis that the appliance of a national equation could show the behavior of these muscles more accurately. The purpose of this paper was, therefore, to compare results of data standardization regarding ventilatory muscle strength using one national and three international reference equations in children and adolescents with CF.

METHODOLOGY

This was a retrospective observational study based on a secondary database research. Patients diagnosed with CF by sweat or genetic test, aging from 8 to 12 years old, in outpatient follow-up at Hospital São Lucas (Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS) were included in the sample. All subjects should have been submitted to ventilatory muscle strength and spirometry tests in the 12 months prior to the study. Patients whose data were not available on the database were excluded from the sample. The research...
was approved by the Ethics Committee of the institu-
tion (08/04102).

Data regarding identification (such as name, birth
date, genre), body mass index, height, spirometry and
ventilatory muscle strength were collected. The spi-
rometric features assessed (KOKO spirometer, Louisville,
CO, EUA) included forced vital capacity (FVC), forced
expiratory volume in one second (FEV1) and mid-breath
forced expiratory flow in measurements of FVC (FEF
25–70%). All procedures were performed in complian-
ce with pre-established guidelines15, and values expres-
sed were absolute and predicted. Manovacuometry test
was made using a digital manovacuometer (MVD500,
Globalmed, Porto Alegre, RS, Brazil). The maximum
inspiratory (MIP) and expiratory (MEP) pressures15
were measured with patients sitting down, wearing a
nose clip, and holding firmly the equipment in their lips
to prevent escaping air. MIP was measured by residual
volumes, and MEP by total lung capacity (TLC).

During the last maneuver, patients were supposed
to put their hands on their cheeks to avoid air accu-
cumulation inside their mouth. All measures were taken
at maximum effort and sustained for at least 1 second.
Patients should perform at least three and at most nine
maneuvers, being three acceptable (without air esca-
pe) and two reproducible (variance <10% between two
measures). The value could not be higher than the pre-
cedent13,15, so the final result would be the highest mea-
sure obtained.

Standardization of the results was made by using
different reference equations (one national and three
international) according to the predictor factors requi-
red by each of them. Reference equations were named
after the first letter of the study author’s name, being
the national equation (2012)14 named H, and the in-
respectively11-13 (Chart 1).

After data standardization, three cut off points were
established: muscle strength above normality (100% of
predicted values), values between 80 and 100% of pre-
diction, and values below 80% of the prediction. To de-
cline the sample size, MIP was the variable of choice.
Considering a 5% alpha error and 80% power, and ai-
miming at detecting a variation of two standard devia-
tions, the sample size was estimated in roughly 20 individuals.

The variables were assessed by the Shapiro-Wilk
test and expressed as mean and standard deviation.
Spirometric data and results of the ventilatory mus-
cle strength were expressed as absolute and predicted
values. Comparisons between equations were made by
one-way ANOVA (Bonferroni post-test). All analy-
zes were made in the software SPSS 18.0 (SPSS Inc.,
EUA), with significance level set at 5%.

RESULTS

Twenty-four patients were included in the samples,
being 9 females. Spirometry values, maximal respira-
tory pressures and sample characterization are shown
in Table 1.

After data standardization, it was shown that inter-
national equations tend to overestimate the findings
in our sample. Considering that there were no signifi-
cant differences regarding gender, data are presented in
group. The national equation (H) had mean predicted
values for MIP significantly lower (p=0.0003) compa-
red to equations W and T (Figure 1A). On the other
hand, predicted MEP in equation H was significantly
lower (p<0.0001) compared to equation T (Figure 1B).

Using 100% of the prediction as cut off point, in-
ternational equations would classify MIP as above nor-
mality (>100%) in 91.6, 79.1, and 75% of subjects (in
W, T and D, respectively), and MEP in 66.6, 87.5 and
50% of subjects, while the national equation would only
overestimate 50 and 77.5% of individuals, respectively.
When data below 80% of the prediction were assessed,
only 4.1, 8.3 and 12.5% (MIP) and 12.5, 4.1 and 29.1%
(MEP) of the patients were classified in this range,
while the national equation estimated a higher per-
centage, 16.6 and 29.1%, respectively. Finally, 4.1, 12.5,
12.5% (MIP) and 20.8, 8.3 e 20.8% (MEP) of patients
had values between 80 and 100% of the international
equations’ prediction, while the national equation esti-
mated 33.3% for both respiratory pressures. These fin-
dings are shown in Figure 2.

DISCUSSION

Our findings show that the standardization of venti-
latory muscle strength data by the use of international
equations tend to overestimate values of maximal pres-
sures in children and adolescents with CF. This may
be justified by social, environmental and ethnical dif-
fferences between peoples, which makes hard to extra-
polate and to apply international equations, for the use
of reference values from other environments may not
represent the actual conditions of ventilatory muscles in our population.

A previous study\(^\text{16}\) assessed healthy Brazilian children and showed significant differences between mean values obtained by them in the tests compared to MIP and MEP means values established in international equations\(^\text{17}\), rather than other equations\(^\text{11,13}\). However, it is worth noting the small sample for a study with healthy individuals and the comparison between mean values without normalization for each equation. ATS recommends the generation of reference values for the spirometric patterns of each region\(^\text{18}\). Ventilatory muscle strength can also be influenced by demographic differences, supporting the hypothesis that a distinct equation for each population is the ideal.

Moreover, studies about lung function also showed significant differences in the prediction of spirometric variables when using reference equations\(^\text{19,20}\) and attributed them to many factors, including sample selection criteria, use of different equipment and techniques, and biological differences between populations\(^\text{16,19,20}\). Overestimation of

<table>
<thead>
<tr>
<th>variables</th>
<th>mean±SD</th>
<th>n=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>15 (62.5)</td>
<td></td>
</tr>
<tr>
<td>Anthropometric variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>10.5±1.53</td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>138.0±0.08</td>
<td></td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>34.6±9.07</td>
<td></td>
</tr>
<tr>
<td>BMI Absolute</td>
<td>17.0±2.84</td>
<td></td>
</tr>
<tr>
<td>Percentile</td>
<td>54.2±3.14</td>
<td></td>
</tr>
<tr>
<td>Spirometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV(_1) (L)</td>
<td>180±0.62</td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>93.29±0.29</td>
<td></td>
</tr>
<tr>
<td>FVC (L)</td>
<td>219±0.65</td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>103.78±2.61</td>
<td></td>
</tr>
<tr>
<td>FEV(_1)/FVC</td>
<td>0.81±0.11</td>
<td></td>
</tr>
<tr>
<td>FEF(_{25-75%}) (L)</td>
<td>1.94±1.07</td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>78.0±39.6</td>
<td></td>
</tr>
<tr>
<td>Manovacuometry (cmH(_2)O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP</td>
<td>921±22.8</td>
<td></td>
</tr>
<tr>
<td>MEP</td>
<td>989±24.5</td>
<td></td>
</tr>
</tbody>
</table>

BMI: Body Mass Index; FVC: forced vital capacity; FEV\(_1\): forced expiratory volume in the first second; FEF\(_{25-75\%}\): force expiratory volume in the first second; MIP: maximal inspiratory pressure; MEP: maximal expiratory pressure; SD: standard deviation
Figure 1. Comparison between prediction values by different reference equations for maximum inspiratory pressure (A) and maximum expiratory pressure (B).

Figure 2. Absolute values and percentual of predicted values for maximum inspiratory pressure and maximum expiratory pressure obtained by standardization with different equations.
ventilatory muscle strength using international equations may also be related to the distinct prediction variables used in each study for maximal respiratory pressures, once the way they influence results may also vary. Wilson et al.11 showed that body mass and age, for MIP and MEP respectively, were the only variables presenting predicted values for both genders. Tomalak et al.12, on the other hand, attested that age was the only variable that could influence results. Domènech-Clar et al.13 used age, height and body mass to establish MIP in both genders and MEP among males, while among females only age was considered for MEP.

In contrast, a study conducted with Brazilian children considered height and body mass to predict MIP, and body mass and age to predict MEP14. Besides that, international studies have shown a lower prediction power (R^2) (9–51\%) when compared to the national equation (46–58\%).

Another important factor to justify differences in value estimative is that ethnics and skin color have not been considered in the evaluation of some studies because samples were homogeneous, including only Caucasian11 or same-origin13 individuals. Ethnic origin has been cited in previous studies as a potential factor influencing results of ventilatory muscle strength21,22. Although our study included Brazilian children from various ethnic origins, it did not influence the results of maximal pressure significantly14. On the other hand and despite ethnics, different social, economic and cultural contexts involving the subjects may also interfere in results, which mean that equations from other countries do not represent global characteristics of children and adolescents, especially considering the interracial and heterogeneous features of the Brazilian people.

Although the inclusion of malnourished patients in our sample may have influenced results, most subjects presented normal nutritional values. In addition, the study of equation H14 showed that even with healthy children and adolescents, or those presenting preserved nutritional profile, international equations tend to overestimate maximal respiratory pressures, which means that this factor is not likely to be relevant. Therefore, the use of a national and current equation can better represent and quantify the conditions of ventilator muscles in children and adolescents with different clinical pictures, avoiding overestimation of results.

Despite the constant use of such method in the assessment and follow-up of CF patients, there is no consensus regarding the expected results of ventilatory muscle strength14,5. In our study, the use of international equations led to the classification of MEP and MIP above normality in 30\% more children compared to the standardization using the national one. Also, international equations pointed out maximal respiratory pressures as decreased in 50\% less patients, for they would identify 8\% for MIP and 15\% for MEP, on average, while the national equation would classify as 16.6 and 29.1\%, respectively.

These findings show that international equations may show a lower rate of children presenting weakening in ventilatory muscles, which delays the diagnosis of potential changes and, consequently, the establishment of treatment, thereby causing patients to be referred to muscle strengthening programs too late, when degrees of muscle weakening are advanced. It is worth emphasizing that the sample with CF patients was relatively healthy as to lung function and nutritional status probably due to the low mean age and periodical follow-up.

CONCLUSION

The standardization of ventilatory muscle strength values in CF children and adolescents by international equations tend to overestimate maximal pressure values. We recommend caution by health professionals when standardizing and interpreting results based on different reference values, being necessary an individual assessment of each equation to be used. National and current equation may help to reflect actual conditions of ventilatory muscles in Brazilian patients, helping to identify clinical pictures of ventilatory muscle weakening more accurately.

ACKNOWLEDGMENTS

The authors thank FAPERGS, CAPES and CNPq for the scholarships.

REFERENCES

