Heterochromatin and numeric chromosome evolution in Bignoniaceae, with emphasis on the Neotropical clade *Tabebuia* alliance

Joel M. P. Cordeiro¹, Miriam Kaehler², Luiz Gustavo Souza³ and Leonardo P. Felix¹

¹Universidade Federal da Paraíba, Campus II, Centro de Ciências Agrárias, Departamento de Ciências Biológicas. Rodovia PB 079, Km 12, CEP: 58397-000, Areia, Paraíba, Brazil.
²Mulleriana: Sociedade Fritz Müller de Ciências Naturais. Rua Humberto Morona, 26, CEP: 80050-420, Curitiba, PR, Brazil.
³Universidade Federal de Pernambuco, Campus I, Centro de Ciências Biológicas, Departamento de Botânica, Av. Prof. Moraes Rego, 1235, CEP: 50670-901, Recife, Pernambuco, Brazil.

Send correspondence to Leonardo P. Felix. Universidade Federal da Paraíba, Campus II, Centro de Ciências Agrárias. Rodovia PB 079, Km 12, CEP: 58397-000, Areia, Paraíba, Brazil. e-mail: lpfelix2@gmail.com

Abstract

Bignoniaceae is a diverse family composed of 840 species with Pantropical distribution. The chromosome number $2n = 40$ is predominant in most species of the family, with $n = 20$ formerly being considered the haploid base number. We discuss here the haploid base number of Bignoniaceae and examine heterochromatin distributions revealed by CMA/DAPI fluorochromes in the *Tabebuia* alliance as well as in some species of the Bignonieae, Tecomeae, and Jacarandeae tribes. When comparing the chromosome records and the phylogenies of Bignoniaceae it can be deduced that the base number of Bignoniaceae is probably $n = 18$, followed by an ascendant dysploidy ($n = 18 \rightarrow n = 20$) in the most derived and diverse clades. The predominant heterochromatin banding patterns in the *Tabebuia* alliance were found to be two terminal CMA+ bands or two terminal and two proximal CMA+ bands. The banding pattern in the *Tabebuia* alliance clade was more variable than seen in Jacarandeae, but less variable than Bignonieae. Despite the intermediate level of variation observed, heterochromatin banding patterns offer a promising tool for distinguishing species, especially in the morphologically complex genus *Handroanthus*.

Keywords: Chromosome number, CMA/DAPI, *Handroanthus*, Polyploidy.

Received: June 12, 2018; Accepted: March 05, 2019.
Introduction

Bignoniaceae is a Pantropical family composed mostly of trees and lianas, and includes 82 genera and 840 species (Fisher et al., 2004; Lohmann and Ulloa, 2016). The family is nested in eight tribes: Bignonieae, Catalpeae, Coleeae, Crescentieae, Jacarandae, Oroxyleeae, Tecomeae, and Tourrettieae, plus the informal Crescentiina clade, that comprises the Neotropical and Palaeotropical subclades (Olmstead et al., 2009). While the morphological features of most tribes of Bignoniaceae are well-characterized, the Crescentiina clade and its subclades are well-sustained lineages, although without clear morphological synapomorphies (Grose and Olmstead, 2007; Olmstead et al., 2009). The Crescentiina clade comprises two informal lineages: the exclusively Neotropical Tabebuia alliance and the Paleotropical clade with Asian and African genera (Olmstead et al., 2009). The Tabebuia alliance has 14 genera and 147 species of trees and shrubs that have composite and palmate leaves (Gentry, 1992; Grose and Olmstead, 2007). Most species within that clade belong to Tabebuia Gomes ex DC. and Handroanthus Mattos, while the remaining genera are smaller but widely-distributed in the Americas (Olmstead et al., 2009). There is great morphological variability within the Tabebuia alliance, so that the delimitation of its species is often difficult.

Bignoniaceae family, from a cytogenetic point of view, comprises two groups with distinct karyotypes. The first group has a wide range of chromosome numbers ($2n = 22, 28, 30, 36, 38, 40$ and 42) and includes the tribes Jacarandae, Tecomeae, Oroxyleeae, and the two genera Argylia D.Don and Delostoma D.Don (Moore, 1974; Goldblatt and Gentry, 1979; Piazzano, 1998; Piazzano et al., 2015). The second group has the prevailing chromosome number $2n = 40$, and includes Bignonieae, Catalpeae, and the Crescentiina clade (Goldblatt and Gentry, 1979; Piazzano, 1998; Alcorcés de Guerra, 2002; Ortolani et al., 2008; Firetti-Leggeri et al., 2011; Piazzano et al., 2015; Cordeiro et al., 2016a, 2017). Ploidy variations ($2n = 60, 80$ and 120) were found for a few species of the tribe Bignonieae and the clade Tabebuia alliance from the second group (Piazzano, 1998; Alves et al., 2013; Piazzano et al., 2015; Cordeiro et al., 2017).

Most species of Bignoniaceae show $n = 20$, and it has been proposed that $x = 20$ is the haploid base number for the family (Goldblatt and Gentry, 1979; Piazzano, 1998; Piazzano et al., 2015). However, when confronting the known chromosome numbers of Bignoniaceae and the phylogenetic analyses of Olmstead et al. (2009), it became evident that the most primitive clades (such as Jacarandae) are $x = 18$, suggesting that a different number from 20 could be the haploid base number of the family.

Chromosome numbers and morphologies are the features most used in karyotype analyses and ground cytotaxonomy studies (Guerra, 2008), although those characters can be uninformative in groups where chromosome numbers are stable and the chromosomes are small (<3 µm) (Guerra, 2000, 2012). Bignoniaceae have chromosome sizes of ~2 µm, meta- submetacentric morphology, and $2n = 36$ or 40 is predominant in the majority of species (Goldblatt and Gentry, 1979; Piazzano et al., 2015; Cordeiro et al., 2016b, 2017). Banding pattern characterizations can therefore often help discriminate between cytotypes with stable chromosome numbers, sizes and morphologies. The fluorochromes Chromomycin A3 (CMA) and 4’6-diamidino-2-phenylindole (DAPI) are specific for GC-rich (CMA) or AT -rich (DAPI) regions respectively, and usually stain regions with tandem repeats of non-coding DNA (Schweizer, 1976; Guerra, 2000). They have been used mainly to characterize karyotypes with chromosomes that have the same size and morphology, and to differentiate the karyotypes of species with identical chromosome numbers (see Almeida et al., 2007; Barros e Silva et al., 2010; Cordeiro et al., 2016b; Almeida et al., 2016). The different patterns found
can help determine taxonomic distinctions and clarify relationships among species (Carvalho et al., 2005; Almeida et al., 2007; Oliveira et al., 2015), as well as contribute to the description of new taxa, such as *Epidendrum sanchezii* E.Pessoa & L.P.Felix (Pessoa et al., 2014), *Ameroglossum manoe-felixii* L.P.Felix & E.M.Almeida (Almeida et al., 2016), and *Spondias bahiensis* P.Carvalho, Van den Berg & M.Machado (Almeida et al., 2007; Machado et al., 2015). Preliminary studies in the tribe Jacarandeae (Cordeiro et al., 2016b) indicated that heterochromatin distribution appeared to follow a specific pattern (8-16 CMA+ terminal bands), while in the tribe Bignonieae (Cordeiro et al., 2017) heterochromatin distribution is quite variable among the species. That result demonstrates that regions rich in GC base pairs (CMA+) can be variable even among closely related species of Bignoniaceae, and that a specific pattern for each group or tribe may not exist.

The main objective of this work was to describe the cytotaxonomic differences between related species of Bignoniaceae (mainly in the Neotropical lineage of the *Tabebuia* alliance clade) by examining their heterochromatin distributions, and discuss the haploid base number of the Bignoniaceae based on compilations of the chromosome numbers known for all lineages of the family.

Materials and Methods

Taxon sampling

Heterochromatin banding patterns of 12 species of the *Tabebuia* Alliance clade were analyzed (Figure 1), as well as those of three species of Jacarandeae, two species of Tecomeae, and two species of Bignonieae tribes. The species, vouchers, and primarily karyological information are presented in Table 1. The vouchers were deposited in the EAN herbarium. An average of three specimens of each species were grown in plastic pots in the experimental garden of the Centro de Ciências Agrárias of the Universidade Federal da Paraíba. When the roots reached 2 cm in length, fifteen roots tips per specimen were excised and analyzed.

Cytogenetic analyses

Mitosis was examined in root tips that had been pre-treated with 0.002 M 8-hydroxyquinoline (8-HQ) for 24 hours at 4 °C, fixed in 3:1 (v/v) absolute ethanol/glacial acetic acid for 30 minutes, and then stored in a freezer at -20 °C. The roots were digested with an enzymatic solution (2% cellulase and 20% pectinase) for one hour at 37 °C. Root tips were squashed in 45% acetic acid and coverslips were removed by freezing in liquid nitrogen. The samples were aged for three days at room temperature and stained with 10 µL of CMA (0.1 mg/mL) for one hour, and then with 10 µL of DAPI (1 µg/mL) for 30 minutes. The samples were mounted in glycerol/McIlvaine’s buffer at pH 7.0 (1:1, v/v) and kept in the dark for three days (Cordeiro et al., 2017).

The best metaphases were photographed using an AxioCam MRC5 digital camera and AxioVision 4.8 software (Carl Zeiss Microscopy GmbH, Jena Germany). Measurements were made using Image Tool v 3.0 software (Donald et al., 2008). The final images were prepared using Adobe Photoshop CS3 v 10.0 (Adobe Systems Incorporated, San Jose, USA). Chromosome morphology was determined using the centromeric index, following Guerra (1986).
Base chromosome number and karyotype evolution

The base chromosome number analysis is based on 179 species of Bignoniaceae, distributed in all of the clades retrieved by Olmstead et al. (2009) for the family. The list of samples, and their chromosome numbers and respective references are presented in Table S1 - Supplementary Material. Karyotype and molecular phylogenetic data were compiled for representatives of the Bignoniaceae. The numbers of species analyzed in each Bignoniaceae clade and their chromosome numbers and frequencies are presented in a phylogeny adapted from Olmstead et al. (2009) to demonstrate their putative chromosome number evolution. Information concerning heterochromatin patterns is presented for Bignonieae, Tabebuia alliance, Tecomeae, and Jacarandaceae. The chromosomes types (A, B, C, D, E and F) follow Cordeiro et al. (2017).

Results

Chromosome numbers

The chromosome number of 12 species of the Tabebuia Alliance clade was analyzed, as well as those of three species of Jacarandaceae, two species of Tecomeae, and two species of Bignonieae tribes. The karyotypes of the 19 species analyzed were predominantly symmetrical, principally with metacentric or sub-metacentric chromosomes. Their sizes ranged from 1.02 µm ± 0.13 in Tabebuia aurea (Silva Manso) Benth. & Hook.f. ex S. Moore to 2.19 µm ± 0.3 in J. praetermissa. The chromosome number of most of the Tabebuia alliance was 2n = 40 (Crescentia L., Sparattosperma Mart. ex Meisner, Tabebuia Gomez, and Zeyheria Mart.). However, Handroanthus Mattos showed 2n = 40 [H. impetiginosus (Mart. ex DC.) Mattos and H. umbellatus] as well as 2n = 80 [H. chrysotrichus (Mart. ex DC.) Mattos and H. ochraceus (Cham.) Mattos], and 2n = 120 [H. serratifolius (Vahl.) S.O.Grose]. The remaining species showed 2n = 36 [Jacaranda mimosifolia D.Don., J. jasminoides (Thunb.) Sandwith., J. praetermissa, and Tecoma stans (L.) Juss. ex Kunth], 2n = 38 [Podranea ricasoliana (Tafani) Sprague], or 2n = 40 (A. citrinum and F. chica) (Table 1).

New chromosome records are described for Handroanthus umbellatus (Sond.) Mattos, Sparattosperma leucanthum (Vell.) K.Schum, Tabebuia elliptica (DC.) Sandwith, T. roseoalba (Ridl.) Sand., and Z. tuberculosa (Vell.) Bureau ex Verl. (2n = 40; Tabebuia alliance), as well as for Fridericia chica (Bonpl.) L.G.Lohmann (2n = 40; Bignonieae tribe) and Jacaranda praetermissa Sandwith (2n = 36; Jacarandaceae tribe). Additionally, a new cytotype is described for Anemopaegma citrinum Mart. ex DC. (2n = 40; Bignonieae tribe).

Base chromosome number and karyotype evolution

The chromosome numbers of 179 species of Bignoniaceae (belonging to all of its clades) were compared (Table S1). Overall, most species showed 2n = 40 (67%) and 2n = 36 (19%). Chromosome numbers were compiled in a phylogeny adapted from Olmstead et al. (2009) to infer chromosome number evolution (Figure 2). The chromosome number 2n = 36 (n = 18) was principally distributed within the tribe Jacarandaceae, while 2n = 40 (n = 20) appeared especially in the tribes Bignonieae and Catalpifae, in the clade Crescentiina, and in Tourrettieae. Other chromosome numbers occurred in Argylia (2n = 30) and Delostoma (2n = 42), and in the tribes Oroxylineae (2n = 28 and 30) and Tecomeae (2n = 22, 38 and 48).
Heterochromatin patterns

The heterochromatin banding patterns of the 19 species analyzed showed GC-rich (CMA+/DAPI−) bands located on the telomeric or proximal regions of the chromosomes (Figures 3 and 4). The species belonging to Jacarandaeae, Tecomeae, and Bignonieae tribes had distinct patterns of CMA+/DAPI− bands. Jacarandaeae had five pairs of telomeric bands in J. jasminoides (Figure 3A) and J. praeternissa (Figure 3C), and four telomeric pairs in J. mimosifolia (Figure 3B). Tecomeae had three pairs of inconspicuous telomeric bands in P. ricasoliana (Figure 3D), and one telomeric pair plus two proximal pairs in T. stans (Figure 3E). Bignonieae displayed two telomeric pairs as well as two telomeric and proximal pairs in A. citrinum (Figure 3F), and 16 telomeric pairs and three telomeric pairs with bands on the short and long arm in F. chica (Figure 3G).

Most species in the Tabebuia alliance had karyotypes with a pair of chromosomes with large CMA+/DAPI− telomeric bands, as seen in Crescentia cujete L. (Figure 4I), S. leucanthum (Figure 4C), T. elliptica (Figure 4E), and T. aurea (Figure 4D). Karyotypes with two telomeric and two proximal bands were observed in H. impetiginosus (Figure 3I), Tabebuia rosea (Bertol.) Bertero ex A.DC. (Figure 4F), T. roseoalba (Figure 4G), and Z. tuberculosa (Figure 4H). The remaining species of Handroanthus showed distinct heterochromatin patterns: four telomeric bands (two large and two small) and four proximal bands in H. umbellatus (Figure 4B), four small telomeric bands in H. ochraceus (Figure 3J), eight telomeric bands (four large and four small) and four proximal bands in H. chrysotrichus (Figure 3H), and ten telomeric bands (four large and six small) and four proximal bands in H. serratifolius (Figure 4A).

Discussion

Chromosome Number evolution in Bignoniaceae

Raven (1975) suggested \(x = 7 \) as the ancestral base number for Bignoniaceae, with the most common \(n = 20 \) being generated by a six-fold polyploidization followed by the loss of one pair of chromosomes; that base number was suggested because he considered Oroxyleae (\(n = 14 \) and 15) to be the most primitive tribe in Bignoniaceae. Several cytological studies in Bignoniaceae (Goldblatt and Gentry, 1979; Piazzano, 1998; Chen et al., 2004) agreed with the hypothesis of Raven (1975). More recent works, such as Piazzano et al. (2015), however, suggested \(x = 20 \) as the basic number of Bignoniaceae. The principal justification for that would be the large number of species with \(2n = 40 \), and groups considered correlated with Bignoniaceae, such as Paulowniaceae and Schlegeliaceae, which also share the haploid number \(n = 20 \).

Molecular phylogeny, however, suggests a different story. Paulowniaceae and Schlegeliaceae are not closely related to Bignoniaceae (Olmstead et al., 2009; Refullo-Rodriguez and Olmstead, 2014). According to Olmstead et al. (2009), the first diverging lineage within Bignoniaceae was Jacarandaeae (\(2n = 36 \)), followed by a strongly supported clade (core Bignoniaceae) with Tourrettieae (\(2n = 40 \)), and then Argylia (\(2n = 30 \)), Tecomeae (\(2n = 18, 22, 34, 36, 38, \) and 40), and a large clade including Oroxyleae (\(2n = 28, 30 \)), Crescentiina (mostly \(2n = 40 \), but also 36, 38, 80 and 120), and Bignonieae (mostly \(2n = 40 \), but also 38, 60, and 80) (Figure 2). Among the most basal lineages (Jacarandaeae, Tourrettieae, Argylia, Tecomeae, and Delostoma) only 8.7% of the species (five species) have \(2n = 40 \), whereas 56.1% (32 species) show \(2n = 36 \) (Table S1, Figure 2). Consequently,
the haploid base number for the family is \(x \neq 20 \). Very likely, the haploid number is \(x = 18 \), which was followed by an ascendant dysploidy \((n = 18 \rightarrow n = 20) \) in the most derived and diversified clades of the family.

Jacarandeae and Tourretieae are the most primitive group for Bignoniaceae. Jacarandeae include two genera (Jacaranda Juss. and Digomphia Benth.) and approximately 55 species that are widely distributed throughout the Neotropics (Gentry, 1980; Olmstead et al., 2009). The chromosome number in the Jacaranda is very well characterized by the \(2n = 36 \) (Cordeiro et al., 2016b). Tourretieae include two small genera subwoody to herbaceous vines (Eccremocarpus Ruiz & Pav. and Tourrettia DC.) and six species distributed in the Andes and north in the Central American Cordilleras to Mexico (Gentry, 1980; Olmstead et al., 2009). There are chromosomal records in this tribe only for Tourrettia lappacea (L'Hér.) Willd. (\(2n = 40 \)) (Goldblatt and Gentry, 1979). Although the chromosomal record for Tourrettieae and Jacarandeae are different, these two basal tribes share some traits, as the doubly compound leaves and pollen that is psilate and tricolpate (Olmstead et al., 2009). Further sampling in Tourrettieae can confirm whether \(2n = 40 \) is a typical chromosomal number for the tribe species or if there may be other chromosome numbers, as also observed in Tecomeae.

Tecomae is placed between the basal (Jacarandeae and Tourrettieae) and most derived clades of the Bignoniaceae (Crescentiina, Bignonieae, Catalpeae). The tribe is characterized by wide variations in chromosome numbers \((2n = 22, 36, 38, 40, \) and \(48) \), unlike other tribes where \(2n = 36 \) (Jacarandeae) or \(2n = 40 \) (Bignonieae, Catalpeae, and Crescentiina clade) predominate (Table S1, Figure 2). Variations in chromosome numbers in Tecomeae represent events of ascending and descending dysploidy resulting in different chromosome numbers. The presence of \(n = 20 \) in Tourrettieae suggests that this number could have arisen at the Core Bignoniaceae by ascending dysploidy, while the other numbers could have arisen by ascending \((n = 21, 24) \) and descending \((n = 11, 14, 15, 19) \) dysploidy.

Most species of the derived clade comprising Catalpeae, Oroxyeleae, Crescentiina, and Bignonieae (Olmstead et al., 2009) have the karyotype \(2n = 40 \). Among the 122 species with known chromosome numbers within this clade, 92.6\% (113 species) show \(2n = 40 \). Only six species show \(2n \neq 40 \) [two species of Mansoa DC. in Bignonieae, two species of Oroxyeleae, and Spathodea campanulata P. Beauv. and Radermacheria xylocarpa (Roxb.) Roxb. ex K. Schum.; Table S1]. The remaining species are polyploids of the haplotype \(n = 20 \) \((2n = 60, 80, 120) \). This large clade comprises around 80\% of the species of Bignoniaceae (Olmstead et al., 2009), which makes \(2n = 40 \) the most common karyotype in the family. The four tribes and informal groups in this derived clade show marked geographical patterns. The most species-rich tribe (Bignonieae) is Neotropical (Fisher et al., 2004) as is one lineage of the informal Crescetiina (which also has one Paleotropical clade) (Grose and Olmstead, 2007). Catalpeae is from temperate North America and China and the tropical Greater Antilles (Gentry, 1980; Olsen and Kirkbride Jr, 2017), while the smallest tribe, Oroxyeleae, is from tropical southern and southeastern Asia and Malaysia (Olmstead, 2013). Their wide distribution around the world and the high numbers of species in those tribes make \(n = 20 \) the most common haploid number in Bignoniaceae. The haploid number \(n = 20 \) could be related to actual diversity and the occupation of a wide variety of habitats.

Reported chromosome numbers suggest that polyploidy is restricted to the clades Tabebuia alliance and Bignonieae (Goldblatt and Gentry, 1979; Piazzano, 1998; Firetti-Leggieri et al., 2011, 2013; Cordeiro et al., 2017). Reproductive analyses of Handroanthus and Anemopaegma Mart. ex Meisn. indicated self-pollination, sporophytic and pseudogamous apomixis, and polyembryonic seeds (Piazzano, 1998; Bittencourt Jr and Moraes, 2010; Firetti-Leggieri et al., 2013) – which are common
features in polyploid species (Piazzano, 1998; Firetti-Leggieri et al., 2013). Piazzano et al. (2015) suggested that the polyploidy observed in those species probably originated by meiotic alteration, leading to the production of non-reduced gametes. The absence of a morphological continuum between sympatric species of the same genera (personal observations) suggests an autopolyploid origin.

Heterochromatin patterns

Heterochromatin in the basal lineage of Jacarandeae (Bignoniaceae) is composed exclusively by 8-16 terminal CMA+ bands, while the following lineages (Tecomeae, Bignonieae, Tabebuia alliance) also demonstrate pericentromeric CMA+ bands, but with reductions in the numbers of terminal CMA+ blocks (Cordeiro et al., 2016b, 2017; Figures 3, 4). In certain plant groups, such as the Caesalpinia group (Van-Lume et al., 2017), and sect. Acanthophora of Solanum L. (Chiarini et al., 2013) and Nierembergia Ruiz & Pav. (Acosta et al., 2016), the heterochromatin patterns appear to follow a specific evolutionary pattern for the species in the different clades. In genera such as Lycium L. (Stiefkens et al., 2010), Pereskia Mill. (Castro et al., 2016), and Ceiba Mill. (Figueredo et al., 2016), however, the heterochromatin pattern appears to be quite conserved and demonstrate only small variability among the different species. In most plant groups, however, heterochromatin patterns tend to be random and quite distinct, even among closely related species (Berjano et al., 2009; Scaldaferro et al., 2012; Grabiele et al., 2018; Van-Lume and Souza, 2018). For Bignoniaceae as a whole, three heterochromatin patterns can be seen, with the occurrence of a specific pattern for Jacarandeae (terminal CMA+ blocks), conserved patterns for the diploid species of the Tabebuia alliance (two terminal CMA+ blocks and 0-2 pericentromeric CMA+ blocks), and a pattern of random attributions in relation to the numbers and positions of CMA+ blocks in the tribe Binonieae (Cordeiro et al., 2017).

The heterochromatin banding patterns of the Bignonieae tribe in Bignoniaceae (Cordeiro et al., 2017) are characterized by strong differences in the sizes and locations of the CMA+ blocks, and six chromosome types are recognized based on heterochromatic regions. The two species of Bignonieae analyzed here confirm the patterns described before for the tribe, with the occurrence of type A (large telomeric CMA+ bands), type B (small telomeric CMA+ bands), type D (telomeric and proximal CMA+ bands), and type F chromosomes (showing a lack of heterochromatic bands) in A. citrinum, and type A, B, E (two telomeric CMA+ bands) and F chromosomes in F. chica (Table 1, Figure 2). The species sampled in Tabebuia alliance, Jacarandeae, and Tecomeae have four chromosome types (according to Cordeiro et al., 2017): type A, type B, type C (proximal CMA+ bands), and type F.

The pattern of two CMA+ telomeric bands (chromosome type A) seen in most species of the Tabebuia alliance is very common among Angiosperms, and usually corresponds to a nucleolar organizer region (Guerra, 2000; Roa and Guerra, 2012). Telomeric CMA bands are most likely related to rDNA sites as seen in most plant species (Barros e Silva et al., 2010; Castro et al., 2016; Marinho et al., 2018). Differences among species could be related to chromosome rearrangements and the amplification and reduction of rDNA sites caused by satellites or transposable sequences (Mehrotra and Goyal, 2014; Evtushenko et al., 2016; Saze, 2018).

The vegetative morphologies of Handroanthus species having yellow corollas are very similar (Gentry, 1992), with H. chrysotrichus and H. ochraceus being very close, even when comparing their flowers, leaves, and fruits. Those two species show a continuum of morphological variations, and hybridization or introgression has therefore been suggested (Gentry, 1992; Bittencourt Jr and Moraes...
However these species have a distinctive heterochromatin banding pattern 4A + 4B + 4C in *H. chrysotrichus* and 4B in *H. ochraceus*. Similarly, *T. rosea* and *T. elliptica* have very similar flowers and fruits, although they can be differentiated by their 3- or 5-foliolate leaves respectively (Gentry, 1992). The heterochromatin banding patterns of those two species are distinct, with the former having two proximal plus two telomeric bands (2A + 2C), while the latter has only two telomeric bands (2A). While banding patterns are still seldom-used in taxonomic studies, the results reported here support their utility in such analyses.

The chromosome numbers and heterochromatin banding patterns of *J. jasminoides*, *J. praetermissa* and *J. mimosifolia* support published data for the genus (Cordeiro et al., 2016b). *Jacaranda* is one of the largest genera of Bignoniaceae, with more than 50 species widely distributed in the Neotropics (Gentry and Morawertz, 1992). The genus is very well characterized by the chromosome number 2n = 36 (Morawetz, 1982; Cordeiro et al., 2016b) and by having 8 to 16 small and terminal CMA+ bands (Cordeiro et al., 2016b). In addition to its stable chromosome features, *Jacaranda* has a very consistent morphology, with all of its species having pinnate or bipinnate leaves, calyx lobes that are deeply divided, staminodes longer than the stamens, and oblong and strongly flattened capsules opening through a rupture perpendicular to the septum (Morawetz, 1982; Gentry and Morawertz, 1992; Olmstead et al., 2009).

The heterochromatin banding patterns of Tecomeae have been poorly studied. The karyotypes of the two species of the tribe analyzed here, however, were relatively distinct from the species belonging to Jacarandeae, the *Tabebuia* alliance clades, and Bignonieae species (Cordeiro et al., 2017). Although *T. stans* shows 2n = 36, its heterochromatin banding pattern (2A + 4C) is quite distinct from species with similar chromosome numbers, such as *Jacaranda* (8-16 A + B; Cordeiro et al., 2016b). Regarding *P. ricasoliana*, this species has an uncommon chromosome number for the Bignonieae (2n = 38) and six small terminal CMA+ bands – a unique pattern in the family (which usually has at least two large terminal CMA+ bands) (Cordeiro et al., 2016b; Cordeiro et al., 2017). Although there is still little data available concerning banding patterns in Tecomeae, their lack of synapomorphies (Olmstead et al., 2009), wide distributions (Olmstead, 2013), high variability of life forms (including herbs, shrubs, trees, and lianas), environments occupied (from tropical to temperate forests, to both Andean and Himalayan mountains), and variations in chromosome numbers of the species within this clade, make it one of the major challenges in Bignonieae.

Conclusion

The revision of the chromosome numbers previously reported for Bignonieae, allied to previous phylogenetic studies for the family, support a basic haploid chromosome number different from 20 for the family. The most likely primary base number for the family is x = 18, which is the most common haploid number among its basal lineages. Ascending disploidy leading to x = 20 is consistent with the chromosome numbers found in the most derived and diversified lineages, where that number predominates. A broad study involving reconstructions of chromosome counts in families related to Bignonieae, as well as in all of its clades, would help clarify the evolution of the karyotype of the family.

The chromosomes of the *Tabebuia* alliance showed only GC-rich bands (CMA+/DAPI−) located in telomeric or proximal regions. The banding pattern within that clade was more variable than seen in *Jacaranda*, but less variable than in Bignonieae. Despite the intermediate level of
variation observed, heterochromatin banding patterns offer a promising tool for distinguishing species, especially in the morphologically complex genus *Handroanthus*.

Acknowledgments

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support, and the Instituto Nacional do Semiárido (INSA) for their technical support.

References

Machado MC, Carvalho PCL and van den Berg C (2015) Domestication, hybridization, speciation, and the origins of an economically important tree crop of Spondias (Anacardiaceae) from the Brazilian caatinga dry forest. Neodiversity 8: 8-49.

Schweizer D (1976) Reverse fluorescent chromosome banding with Chromomycin and DAPI. Chromosa 58: 307-324

Supplementary material

The supplementary material will be available in the final version of the article.
Figure 2 - Chromosome numbers of the Bignoniaceae clades. Values on the branches indicate bootstrap parsimony analysis and the posterior probability of Bayesian inference; Asterisks indicate 100% posterior probabilities (topology and support values following Olmstead et al., 2009). Circle sizes correspond to the numbers of species with chromosome records in each clade. Chromosomes types A, B, C, D, E and F follow Cordeiro et al. (2017).
Figure 3 - Distribution of heterochromatic bands (CMA+ in yellow) of species of Jaracandeae, Tecomeae, Bignonieae and the Tabebuia alliance. A. Jacaranda jasminoides (2n = 36), B. J. mimosifolia (2n = 36), C. J. praetermissa (2n = 36), D. Podranea ricasoliana (2n = 38), E. Tecoma stans (2n = 36), F. Anemopaegma citrinum (2n = 40), G. Fridericia chica (2n = 40), H. Handroanthus chrysotrichus (2n = 80), I. H. impetiginosus (2n = 40), J. H. ochraceus (2n = 80). Scale bar in J corresponds to 10 µm. Arrow heads indicate minor CMA bands; inserts in D, H and J highlight chromosomes with inconspicuous CMA bands.
Figure 4 - Distribution of heterochromatic bands (CMA+, in yellow) of species of the Tabebuia alliance (including Crescentiae). A. *Handroanthus serratifolius* (2n = 120), B. *H. umbellatus* (2n = 40), C. *Sparattosperma leucanthum* (2n = 40), D. *Tabebuia aurea* (2n = 40), E. *T. elliptica* (2n = 40), F. *T. rosea* (2n = 40), G. *T. roseoalba* (2n = 40), H. *Zeyheria tuberculosa* (2n = 40), I. *Crescentia cujete* (2n = 40). Scale bar in I corresponds to 10 µm. Arrow heads indicate minor CMA bands; inserts in A highlight chromosomes with inconspicuous CMA bands.

<table>
<thead>
<tr>
<th>Tribe/Alliance/species</th>
<th>Voucher</th>
<th>Origin</th>
<th>2n</th>
<th>Median size (µm)</th>
<th>Heterochromatin patterns</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacarandae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacaranda jasminoides (Thunb.) Sandwith.</td>
<td>JMPC, 131</td>
<td>Sertãozinho-PB</td>
<td>36</td>
<td>2.09</td>
<td>6A + 4B + 26F</td>
<td>3A</td>
</tr>
<tr>
<td>J. mimosifolia D.Don</td>
<td>LPF, 14457</td>
<td>Areia-PB</td>
<td>36</td>
<td>1.84</td>
<td>6A + 2B + 28F</td>
<td>3B</td>
</tr>
<tr>
<td>J. praeternissa Sandwith*</td>
<td>LPF, 17606</td>
<td>Serra da Capivara-PI</td>
<td>36</td>
<td>2.19</td>
<td>2A + 8B + 26F</td>
<td>3C</td>
</tr>
<tr>
<td>Tecomeae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podranea ricasoliana (Tanfani) Sprague</td>
<td>JMPC, 135</td>
<td>Areia-PB</td>
<td>38</td>
<td>1.07</td>
<td>6B + 32F</td>
<td>3D</td>
</tr>
<tr>
<td>Tecoma stans (L.) Juss. ex Kunth</td>
<td>LPF, 14412</td>
<td>Paulo Afonso-BA</td>
<td>36</td>
<td>1.16</td>
<td>2A + 4C + 30F</td>
<td>3E</td>
</tr>
<tr>
<td>Bignonieae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemopaegma citrinum Mart. ex DC.*</td>
<td>JMPC, 1254</td>
<td>Pico do Jabre-PB</td>
<td>40</td>
<td>1.32</td>
<td>2A + 2B + 2D + 34F</td>
<td>3F</td>
</tr>
<tr>
<td>Fridericia chica (Bonpl.) L.G.Lohmann*</td>
<td>Manaus, AM</td>
<td></td>
<td>40</td>
<td>1.76</td>
<td>6A + 26B + 6E + 2F</td>
<td>3G</td>
</tr>
<tr>
<td>Tabebuia alliance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handroanthus chrysotrichus (Mart. ex DC.)</td>
<td>EMA, 814</td>
<td>Campina Grande-PB</td>
<td>80</td>
<td>1.44</td>
<td>4A + 4B + 4C + 68F</td>
<td>1B, 3H</td>
</tr>
<tr>
<td>H. imperginous (Mart. ex DC.) Mattos</td>
<td>SAAL, 86</td>
<td>Areia-PB</td>
<td>40</td>
<td>1.39</td>
<td>2A + 2C + 36F</td>
<td>1C, 3I</td>
</tr>
<tr>
<td>H. ochraceus (Cham.) Mattos</td>
<td>SAAL, 84</td>
<td>João Pessoa-PB</td>
<td>80</td>
<td>1.42</td>
<td>6B + 74F</td>
<td>1D, 3J</td>
</tr>
<tr>
<td>Tribe/Alliance/species</td>
<td>Voucher</td>
<td>Origin</td>
<td>2n</td>
<td>Median size (µm)</td>
<td>Heterochromatin patterns</td>
<td>Figure</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-------------------</td>
<td>----</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>H. serratifolius (Vahl.) S. O.</td>
<td>JMPC, 251</td>
<td>Areia-PB</td>
<td>120</td>
<td>1.63</td>
<td>4A + 6B + 4C + 106F</td>
<td>1E, 4A</td>
</tr>
<tr>
<td>Grose. Mattos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. umbellatus (Sond.) Mattos*</td>
<td>JMPC, 1043</td>
<td>Sertãozinho-PB</td>
<td>40</td>
<td>1.66</td>
<td>2A + 2B + 4C + 32F</td>
<td>1F, 4B</td>
</tr>
<tr>
<td>Sparattosperma leucanthum (Vell.) K.Schum.*</td>
<td>LPF, 15402</td>
<td>Alvorada de Minas-MG</td>
<td>40</td>
<td>1.55</td>
<td>2A + 38F</td>
<td>1G, 4C</td>
</tr>
<tr>
<td>Tabebuia aurea (Silva Manso)</td>
<td>JMPC, 1078</td>
<td>Pirpirituba-PB</td>
<td>40</td>
<td>1.02</td>
<td>2A + 38F</td>
<td>1H, 4D</td>
</tr>
<tr>
<td>Benth. & Hook.f. ex S. Moore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. elliptica (DC.) Sandwith*</td>
<td>SAAL, 81</td>
<td>Santa Rita-PB</td>
<td>40</td>
<td>1.86</td>
<td>2A + 38F</td>
<td>1I, 4E</td>
</tr>
<tr>
<td>T. rosea (Bertol.) Bertero ex A. DC.</td>
<td>JMPC, 154</td>
<td>Areia-PB</td>
<td>40</td>
<td>1.51</td>
<td>2A + 2C + 36F</td>
<td>1J, 4F</td>
</tr>
<tr>
<td>T. roseoalba (Ridl.) Sandwith*</td>
<td>LPF, 14590</td>
<td>Campina Grande-PB</td>
<td>40</td>
<td>1.67</td>
<td>2A + 2C + 36F</td>
<td>1K, 4G</td>
</tr>
<tr>
<td>Zeyheria tuberculosa (Vell.)</td>
<td>LPF, 14468</td>
<td>Maracás-BA</td>
<td>40</td>
<td>1.85</td>
<td>2A + 2C + 36F</td>
<td>1L, 4H</td>
</tr>
<tr>
<td>Crescentieae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crescentia cujete L.</td>
<td>JMPC, 137</td>
<td>Serra da Raiz-PB</td>
<td>40</td>
<td>1.21</td>
<td>2A + 38F</td>
<td>1A, 4I</td>
</tr>
</tbody>
</table>

*First chromosome count for the species.
**New cytotype for the species.