Mechanisms involved in the induction of aneuploidy: the significance of chromosome loss

A.I. Seoane, A.M. Güerci and F.N. Dulout

INTRODUCTION

Although aneuploidy is a serious health problem, the experimental methodology used to investigate the condition has not been completely validated. Development of a comprehensive test battery is necessary for the evaluation and detection of aneugenic chemicals. The reliability of any aneuploidy test is always challenged by the fact that the mechanisms involved in aneuploidy induction are poorly understood due, in part, to the multiple factors related with the occurrence of chromosome disjunction and nondisjunction.

Various test systems have been used to study chemical-induced aneuploidy. Chromosome counting in diploid cell lines (Danford, 1984, 1985; Dulout and Natarajan, 1987) was a validated test although it is time consuming.

Fluorescence in situ hybridization with probes for entire chromosomes was recently used (van Diemen et al., 1995; Dulout et al., 1996; Natarajan et al., 1996). Staining kinetochores in the cytokinesis-blocked micronucleus assay (Eastmond and Tucker, 1989; Lynch and Parry, 1993; Kirsch-Volders et al., 1997; Thompson and Perry, 1988) or in situ hybridization with centromere specific DNA probes, followed by immunofluorescent staining (Eastmond and Pinkel, 1990; Farooqi et al., 1993) are useful to discriminate between clastogens and aneuploidogens. Anaphase-telophase analysis, an ancilliary alternative test system (Nichols et al., 1972; Dulout and Olivero, 1984) has been used to evaluate aneugenic damage by counting lagging chromosomes (Seoane and Dulout, 1994; Seoane, 1999).

In the present study, results obtained by chromosome counting, anaphase-telophase analysis and cytokinesis-blocked micronucleus assay were compared. Experiments were carried out to test the suspected aneugenic ability of different compounds or to validate the assay by studying known aneugenic chemicals. Chromosome counting reliability and usefulness was demonstrated by Dulout and Natarajan (1987). The aneugenic ability of the synthetic estrogen diethylstilbestrol (DES), acetaldehyde, propionaldehyde, chloral hydrate, cadmium chloride, cadmium sulfate, potassium dichromate and cacodilic acid has been evaluated by employing this assay (Dulout and Natarajan, 1987; Dulout and Furnus, 1988; Furnus et al., 1990, Güerci et al., 2000). Anaphase-telophase analysis was employed to test the aneugenic ability of propionaldehyde, cadmium chloride, cadmium sulfate, potassium dichromate and cacodilic acid has been evaluated by employing this assay (Dulout and Natarajan, 1987; Dulout and Furnus, 1988; Furnus et al., 1990, Güerci et al., 2000). Anaphase-telophase analysis was employed to test the aneugenic ability of propionaldehyde, cadmium chloride, cadmium sulfate, potassium dichromate, chromium chloride (III), nickel chloride and nickel sulfate (Seoane and Dulout, 1994; Seoane, 1999). Cytokinesis-blocked micronucleus assay using anti-kinetochore antibodies was employed to evaluate the above mentioned heavy metal salts (Seoane, 1999).

MATERIAL AND METHODS

Chinese hamster embryo cells (CHED) and human diploid fibroblasts (MRC-5) were employed to carry out...
the chromosome counting assay. Chinese hamster ovary cells were employed in the anaphase-telophase test. MRC-5 cells were used in the cytokinesis-blocked micronucleus assay. Experimental procedures, compound dilutions and doses assayed have been described in previous papers (Dulout and Furnus, 1988; Furnus et al., 1990; Seoane and Dulout, 1994; Seoane and Dulout, 1999; Seoane, 1999; Güerci et al., 2000)

RESULTS

Irradiation increased the frequency of aneuploid cells with a corresponding decrease of diploid cells, except for the dose of 100 rad (Figure 1). Pulse treatments with different doses of DES also increased the frequency of aneuploid cells in relation with the dose employed but not with the duration of the treatment.

In cells treated with acetaldehyde, ethanol and DES the frequency of aneuploid cells increased significantly compared to controls (Figures 2,3). In addition, the frequency of aneuploid cells observed in the three treatments with acetaldehyde was higher than that detected in cells treated with DES. The increase of aneuploid metaphases was mainly due to the increment of hypoploid cells. Whereas the relation between hypoploid/hyperploid cells was 0.81 in the controls, in treated cells this relation varied from 2.72 to 3.82.

In the treatments with propionaldehyde and chloral hydrate a significant increase of aneuploid cells compared to untreated controls was observed (Figure 4). Although the frequencies of hypoploid cells were higher than the frequencies of hyperploid cells in all treatments, the differences were not significant.

An increase of lagging chromosomes was found in cells treated with cadmium salts, although significant differences from untreated controls were only found with the highest dose of cadmium sulfate. Whereas potassium dichromate increased the frequencies of lagging chromosomes at all the doses employed, only the two highest doses of chromium chloride gave positive results. Increments of lagging chromosome frequencies induced by nickel salts were lower than those induced by the other heavy metal salts. However, significant differences from controls were found only with the two highest doses (Figure 5).

Results of chromosome counting using MRC-5 cells (Figure 6) showed significant increments of aneuploidy in cacodilic acid- and cadmium chloride-treated cells. Cadmium sulfate induced significant increases at the two highest doses. Potassium dichromate induced significant increments of aneuploidy at all doses tested although at a lower degree than the other compounds.

Cadmium salts induced significant increases of kinetochore-positive and kinetochore-negative micronuclei when the cells were treated with the two highest concentrations of each compound. The lowest doses induced borderline increases in the frequency of kinetochore-positive micronuclei but no differences with respect to control values were found in the frequency of kinetochore-negative micronuclei. The highest increments of total micronuclei frequency were induced by chromium chloride. Most of these micronuclei were kinetochore-positive. Potassium dichromate also induced higher increases of kinetochore-positive micronuclei than kinetochore-negative ones. Nickel salts induced statistically significant increases of kinetochore-positive micronuclei with the three doses employed. On the other hand, increases in kinetochore negative micronucleus frequency were only slight (Figure 7).
When a normal disjunction occurs in a mitotic division, the chromatids of a chromosome segregate to each cellular pole. Chromosomal missegregation can be produced by: 1) multipolar mitoses arisen from centriole alterations, 2) nondisjunction, when the chromatids of a chromosome do not separate correctly and the entire chromosome migrates to one pole, 3) chromosome loss, when a chromosome (or a chromatid) remains lagged at the equator and does not migrate to the corresponding pole.

If multipolar mitosis occurs, multinucleated cells with hypoploid nuclei are formed. Nondisjunction originates two aneuploid cells, one hypoploid and the other hypoploid. On the other hand, lagging chromosomes at mitosis produce two hypoploid daughter cells. Lagging chromatids originate a diploid and a hypoploid cell. In both cases
micronuclei containing either the lagged chromosome or the lagged chromatid are formed.

When cells were analyzed by chromosome counting, higher frequencies of hypoploid than hyperploid cells were found. These results seem to be in conflict with the belief that aneuploidy is a result of the induction of equal numbers of these two kinds of cells. Nevertheless, other evidence indicated that the increase of hypoploid cells is not a result of chromosome loss caused by technical factors: a) the chromosome counts were only made in metaphases surrounded by cytoplasm, as an indication of the integrity of the plasma membrane; b) the average chromosome number per cell in the different treatments was constant (data not shown); c) as the frequency of aneuploid cells increased, a correlative increment of multinucleated interphase cells was observed in the cultures treated with the chemicals. When the frequencies of hypoploid cells were compared with the frequency of hyperploidy plus the frequency of multinucleated cells a positive correlation and a good fit with the regression line were found.

The kinetochore-stained micronucleus test is based upon the assumption that a micronucleus containing a kinetochore presumably contains the centromere and the entire chromosome. This micronucleus will segregate with only one of the daughter cells but both have a high probability of being aneuploid (Thompson and Perry, 1988; Eastmond and Tucker, 1989). It must be considered that only malsegregation events (when a chromosome or a chromatid fails to migrate correctly and remains at the metaphase plate) could be detected in the cytokinesis-blocked micronucleus assay by using CREST antibodies. When nondisjunction occurs, two aneuploid daughter cells are formed (one hypoploid and one hyperploid), but neither lagging chromosomes nor micronuclei are induced if the entire chromosome migrates correctly to one pole. Positive-kinetochore micronuclei are formed only when a chromo-

Figure 5 - Frequencies of lagging chromosomes induced by different metal salts in anaphase-telophase of CHO cells.
Mechanisms of aneuploidy induction

Figure 6 - Percentages of hypoploid and hyperploid MRC-5 cells after treatment with cacodilic acid doses of 1.25×10^{-2} mM (CA1), 2.5×10^{-2} mM (CA2) and 5.0×10^{-2} mM (CA3); cadmium chloride doses of 1.0×10^{-3} mM (CC1), 2.0×10^{-3} mM (CC2) and 4.0×10^{-3} mM (CC3); cadmium sulfate doses of 3.3×10^{-5} mM (CS1), 6.7×10^{-5} mM (CS2) and 1.3×10^{-4} mM (CS3), and potassium dichromate doses of 2.5×10^{-4} mM (PD1), 5.0×10^{-4} mM (PD2) and 1.0×10^{-3} mM (PD3).

Figure 7 - Frequencies of kinetochore-negative and kinetochore-positive micronuclei in MRC-5 cells detected by using CREST antibodies.

Figure 6 - Percentages of hypoploid and hyperploid MRC-5 cells after treatment with cacodilic acid doses of 1.25×10^{-2} mM (CA1), 2.5×10^{-2} mM (CA2) and 5.0×10^{-2} mM (CA3); cadmium chloride doses of 1.0×10^{-3} mM (CC1), 2.0×10^{-3} mM (CC2) and 4.0×10^{-3} mM (CC3); cadmium sulfate doses of 3.3×10^{-5} mM (CS1), 6.7×10^{-5} mM (CS2) and 1.3×10^{-4} mM (CS3), and potassium dichromate doses of 2.5×10^{-4} mM (PD1), 5.0×10^{-4} mM (PD2) and 1.0×10^{-3} mM (PD3).

Figure 7 - Frequencies of kinetochore-negative and kinetochore-positive micronuclei in MRC-5 cells detected by using CREST antibodies.
some (or chromatid) remains lagged as a consequence of segregation errors (Ford and Correl, 1991; Van Hummelen et al., 1992). Neither lagging chromosomes nor positive kinetochore micronuclei are indicative of nondisjunction (Lynch and Parry, 1993). These considerations are in agreement with findings obtained by chromosome counting and anaphase-telophase analysis. Recently, Natarajan and coworkers (1993) found that hypoploidy was induced more frequently than hyperploidy in cadmium chloride-treated CHED cells. Similar results were reported by Warr and coworkers (1993) in LUC2 cells treated with other aneuploidy-inducing agents. Taking into account these facts, it appears that nondisjunction is not the main mechanism in the generation of aneuploidy and it can be proposed that malsegregation is at least partially involved.

RESUMO

A indução de aneuploidia por agentes físicos e químicos usando diferentes sistemas de teste foi avaliada. O efeito de raios-X, cafeína, acetaldéído, etanol, dietietilbestrol, propionaldeído e hidrato de cloral foi estudado por contagem cromossômica em células diploídicas embrionárias de hamster chinês. A habilidade aneugênica de cloreto de cádmio, sulfato de cádmio, dicromato de potássio, cloreto de crômio, cloreto de níquel e sulfato de níquel foi avaliada por meio de análise de anáfase-telófase em células de ovário de hamster chinês. A contagem cromossômica em fibroblastos humanos (linha celular MRC-5) foi empregada para avaliar o efeito de ácido cacaófilico, cloreto de cádmio, sulfato de cádmio e dicromato de potássio. Finalmente, a indução de micronúcleos positivos e negativos para cinetocoro por cloreto de cádmio, sulfato de cádmio, dicromato de potássio, cloreto de crômio e cloreto de níquel foi estudada usando anticorpos CREST. Quando o efeito de agentes diferentes foi determinado por contagem cromossômica, observou-se um aumento de células hipoploïdes mas não de hiperploïdes. A análise anáfase-telófase mostrou que sais metálicos aumentaram a frequência de cromossomos “lagging”. Este achado foi confirmado pelo aumento de micronúcleos positivos para cinetocoro usando anticorpos CREST. Portanto, a perda cromossômica poderia ser considerada a principal causa de aneuploidia induzida.

REFERENCES

(Received November 23, 2000)