Beta-globin gene cluster haplotypes in Venezuelan sickle cell patients from the State of Aragua

Nancy Moreno¹, José A. Martínez², Zorella Blanco³, Leidy Osorio¹ and Patrick Hackshaw⁴

¹Laboratorio de Biología Molecular, Universidad de Carabobo Núcleo Aragua.
²Departamento de Biología, Universidad Pedagógica Experimental Libertador Maracay, Estado Aragua.
³Hospital Dr. Domingo Luciani El Llanito.
⁴Servicio de Hematología del Hospital Central de Maracay, Estado Aragua.

Abstract

Seven polymorphic sites in the β-globin gene cluster were analyzed on a sample of 96 chromosomes of Venezuelan sickle cell patients from the State of Aragua. The Benin haplotype was predominant with a frequency of 0.479, followed by the Bantu haplotype (0.406); a minority of cases with other haplotypes was also identified: atypical Bantu A2 (0.042), Senegal (0.031), atypical Bantu A7 (0.021) and Saudi Arabia/Indian (0.021) haplotypes; however, the Cameroon haplotype was not identified in this study. Our results are in agreement with the historical records that establish Sudanese and Bantu origins for the African slaves brought into Venezuela.

Key words: haplotypes, Beta-globin gene cluster, sickle cell.

Received: March 5, 2002; accepted: March 25, 2002

Introduction

Sickle cell disease (SCD) exhibits a wide spectrum of clinical behavior: everything from a mild condition to an incapacitating illness; its hematological characteristics, as well as its clinical severity, are influenced by variations in fetal hemoglobin (HbF) levels (Falusi and Olatungi, 1994; Steinberg, 1996), the simultaneous presence of α-thalassemia (Figueiredo et al., 1996; Mukherjee et al., 1997) glucose-6 phosphate dehydrogenase deficiency (Bouanga et al., 1998) and the β-globin cluster linked haplotypes (Powars and Hiti, 1993; Powars et al., 1994; Steinberg, 1996). The β⁸ gene is in linkage disequilibrium with five main different haplotypes of the β gene cluster, which were named according to the geographical areas where they are most prevalent: Benin, Cameroon, Central African Republic (CAR or Bantu), Senegal and Saudi Arabia/Indian (SAI) (Pagnier et al., 1984; Kulozik et al., 1986; Lapouméroulie et al., 1992).

Sickle cell disease was introduced into the American continent mainly by the massive trade of African slaves which occurred between the sixteenth and nineteenth centuries, and is the most common hereditary disorder in the Americas. Sickle cell epidemiological studies carried out in Venezuela demonstrated a variable frequency, ranging from zero in the Venezuelan Indians up to 5 percent in the Mestizo and Afro-American populations; in some regions such as the North Central Coastal Region the frequency has risen to as much as 12% (Arends, 1971; Arends et al., 1982). In order to provide the required information for further analysis of the heterogeneity of the hematological parameters and clinical manifestations of SCD in Venezuela, the DNA β-globin gene cluster haplotypes were analyzed in 48 Venezuelan sickle cell patients from the State of Aragua. The results were compared with those found in other studies with Venezuelan patients (Arends et al., 2000), Guadeloupe Island (Kéclard et al., 1996) and Iberoamerican populations of Cuba (Muniz et al., 1995), Colombia (Cuellar-Ambrosi et al., 2000) and Brazil (Zago et al., 1992; Figueiredo et al., 1994; Gonçalves et al., 1994; Pante de Sousa et al., 1998, 1999).

Subjects and Methods

The patient sample was composed of 48 non-related HbS homozygotes, from the State of Aragua, which is in the North Central Coastal Region of Venezuela, at about 9°23’’ to 10°33’’ N. and 66°33’’ to 67°53’’ W. The population of this State is the result of an intense process of admixture among Caucasians, Amerindians, and Afro-Americans and its total population size, according to the 1990 census (OCEI, 1990) represents 6.2% of the Venezuelan
population. These patients were attended at the Hematological Service at the Maracay Central Hospital in the State of Aragua. There were 23 males and 25 females, with a mean age of 21 ± 3.3 years.

Venous blood samples were collected using EDTA as an anticoagulant, and the hematological parameters were determined by standard laboratory procedures. The buffy coat was used for the preparation of nuclear DNA according to previously described methods (Kirby, 1992). Diagnosis of SCD was based on the β^+S mutation, as reported previously (Martínez et al., 1998). Haplotype frequencies were determined by the analysis of the following polymorphic restriction sites in the β-globin gene cluster: 1) $Hinc$ II 5' of ε; 2) Xmn I 5' of $G\gamma$; 3) $Hind$ III in the IVSII of $G\gamma$; 4) $Hind$ III in the IVSII of $A\gamma$; 5) $Hinc$ II in the $\Psi\beta$; 6) $Hinc$ II 3' of $\Psi\beta$; and 7) $Hinf$ I 5' β. Segments containing each of these sites were amplified by PCR and subsequently digested with the appropriate enzyme. The oligonucleotide primers used for the analysis of sites 2 to 7 were described by Sutton et al. (1989) and site 1 was analyzed using a primer reported by Guerreiro et al. (1992).

Results

The β-globin cluster haplotypes identified in the Venezuelan patients are presented in Table I. Benin is the most frequent with a frequency of 0.479, followed by Bantu (0.406), Senegal (0.031), and Saudi Arabia/Indian (0.021). The Bantu A2 and Bantu A7 atypical haplotypes described by Srinivas et al. (1988) were observed with a frequency of 0.042 and 0.021, respectively. No Cameroon haplotypes were identified in this study. Fourteen of the 48 SCD patients were homozygous for the Benin haplotype (29.2%), 9 were Bantu homozygotes (18.7%) and all the others were heterozygotes (52.1%). Table II shows the β^+ typical haplotype frequency distribution among the Venezuelan patients studied in this work, compared with those from several Iberoamerican populations and Caribbean Islands.

Table I - β-globin gene cluster haplotypes identified in a sample of 96 chromosomes from Venezuelan sickle cell disease patients

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Number of chromosomes (n = 96)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>46</td>
<td>0.479</td>
</tr>
<tr>
<td>Bantu</td>
<td>39</td>
<td>0.406</td>
</tr>
<tr>
<td>Atypical Bantu A2</td>
<td>4</td>
<td>0.042</td>
</tr>
<tr>
<td>Senegal</td>
<td>3</td>
<td>0.031</td>
</tr>
<tr>
<td>Saudi Arabia/Indian</td>
<td>2</td>
<td>0.021</td>
</tr>
<tr>
<td>Atypical Bantu A7</td>
<td>2</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Table II - Frequency distribution (%) of the typical β^+ haplotypes in patients from Iberoamerican populations and the Guadeloupe Island.

<table>
<thead>
<tr>
<th>Population</th>
<th>N. of chromosomes</th>
<th>Bantu</th>
<th>Benin</th>
<th>Senegal</th>
<th>Arab/Indian</th>
<th>Cameroon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venezuela (State Aragua)</td>
<td>90</td>
<td>43.3</td>
<td>51.1</td>
<td>3.3</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Venezuela (All country)</td>
<td>176</td>
<td>32.4</td>
<td>51.1</td>
<td>14.2</td>
<td>0.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Cuba</td>
<td>198</td>
<td>41.0</td>
<td>51.0</td>
<td>8.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Colombia (Western Region)</td>
<td>92</td>
<td>55.5</td>
<td>34.8</td>
<td>4.3</td>
<td>0.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Brazil (Afro-Brazilians from the Amazon Region)</td>
<td>20</td>
<td>60.0</td>
<td>10.0</td>
<td>30.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Brazil (Belém, State of Pará)</td>
<td>59</td>
<td>66.1</td>
<td>30.5</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Brazil (Salvador, State of Bahia)</td>
<td>4</td>
<td>55.0</td>
<td>45.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Brazil (Ribeirão Preto, State of São Paulo)</td>
<td>67</td>
<td>73.0</td>
<td>25.5</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Brazil (Campinas, São Paulo)</td>
<td>142</td>
<td>79.6</td>
<td>18.4</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Guadeloupe</td>
<td>252</td>
<td>11.5</td>
<td>77.0</td>
<td>8.7</td>
<td>0.0</td>
<td>2.8</td>
</tr>
</tbody>
</table>

1Present study; 2Arends et al. (2002); 3Muniz et al. (1995); 4Cuellar-Ambrosi et al. (2000); 5Pante de Sousa et al. (1999); 6Pante de Sousa et al. (1998); 7Figueiredo et al. (1994); 8Zago et al. (1992); 9Gonçalves et al. (1994). 10Kéclard et al. (1996).
admixtural process which occurs in our population; in a study carried out on African SCD patients, the vast majority of haplotypes were found in homozygosity (Sow et al., 1995). Our results differed significantly from those reported by Arends et al. (2000) in another study performed on sickle cell Venezuelan patients from all over the country ($\chi^2 = 14.62; d.f. = 4; p < 0.01$). This may be due to different patient ascertainment and/or a diverse historical origin of the African-derived patients from Aragua. On the other hand, our results are in agreement with the haplotype distribution found in patients from Cuba ($\chi^2 = 6.60; d.f. = 3; p > 0.05$); while significant differences exist with the Colombian data ($\chi^2 = 11.23; d.f. = 4; p < 0.025$). A highly significant difference was observed when the Venezuelan patients were compared with those from Guadeloupe ($\chi^2 = 42.63; d.f. = 2; p < 0.001$), and those from Brazil ($\chi^2 = 20.03; d.f. = 3; p < 0.001$). It is probable that all these differences reflect the origin of the forced migration of African slaves to the American continent, although, as was indicated for the two Venezuelan samples, patient ascertainment should also be considered.

African slavery was instituted in Venezuela to meet the growing labor demands of an emerging agricultural economy; historically it is reported that the African slaves brought to Venezuela were from the Sudan and Bantu regions (Acosta Saignes, 1984), although some slaves came to Venezuela from the others colonies, especially the Antilles; in consequence, the predominance of the Benin and Bantu haplotypes is in accordance with these historical records.

Acknowledgments

We are grateful to the blood donors for their collaboration with this investigation. We offer special thanks to Mrs Melanie Mackie and Lic. Jesús Ernesto Lisboa M. for their contribution in the manuscript revision. This research was supported by BID-CONICIT Grant BTS-067, CDCH Universidad de Carabobo Grant 90-007 and CIADANA.

References

Oficina Central de Estadística e Informática (1990) XII Censo General de Población y Vivienda. Caracas, Venezuela.
northern Brazilian population: the combined effects of slave
Pante de Sousa G, Mousinho-Ribeiro RC, Melo dos Santos EJ and
Guerreiro JF (1999) β-globin haplotypes analysis in
Afro-Brazilians from the Amazon region: evidence for a sig-
Biol. 26:365-373.
Powars D and Hiti A (1993). β' gene cluster haplotypes as genetic
147:1197-1202.
Powars DR, Meiselman HJ, Fisher TC, Hiti, A and Johnson C
(1994) Beta-S gene cluster haplotypes modulate hematolo-
getic and hemorheologic expression in sickle cell anemia.
Oncol. 16:55-61.
Sow A, Peterson E, Josifovska O, Fabry ME, Krishnamoorthy R
and Nagel RL. (1995) Linkage-disequilibrium of Senegal
haplotype with the βS gene in the Republic of Guinea. Am. J.
Hematol. 50:301-303.
Srinivas R, Dunda O, Krishnamoorthy R, Fabry ME, Georges A,
Labie D and Nagel RL (1988) Atypical haplotypes linked to
the βS gene in Africa are likely to be the product of recombi-
Steinberg, MH (1996) Modulation of the phenotypic diversity of
sickle cell anemia. Hemoglobin 20:1-19.
Sutton M, Bouhassira EE and Nagel RL (1989) Polymerase chain
reaction amplification applied to the determination of β-like
Zago MA, Figueiredo MS and Ogo SH (1992) Bantu βS cluster
haplotype predominates among Brazilian blacks. Am. J.