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Abstract

This work performs a data driven comparative study of clustering methods used in the analysis of gene expression
time courses (or time series). Five clustering methods found in the literature of gene expression analysis are
compared: agglomerative hierarchical clustering, CLICK, dynamical clustering, k-means and self-organizing maps.
In order to evaluate the methods, a k-fold cross-validation procedure adapted to unsupervised methods is applied.
The accuracy of the results is assessed by the comparison of the partitions obtained in these experiments with gene
annotation, such as protein function and series classification.
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Introduction

In time course experiments, the expression of a cer-

tain cell is measured in some time points during a particular

biological process. By knowing groups of genes that are ex-

pressed in a similar fashion through a biological process,

biologists are able to infer gene function and gene regula-

tion mechanisms (Quackenbush, 2001; Slonim, 2002).

Since these data consist of expression profiles of thousand

of genes, their analysis cannot be carried out manually,

making necessary the application of computational tech-

niques such as clustering methods.

There has been a great deal of work on the application

of such methods to gene expression data, each one using

distinct data sets, clustering techniques and proximity indi-

ces. However, the majority of these works has given em-

phasis on the biological results, with no critical evaluation

of the suitability of the clustering methods or proximity in-

dices used. In the few works in which cluster validation was

applied with gene expression data, the focus was on the

evaluation of the validation methodology proposed

(Lubovac et al., 2001; Yeung et al., 2001; Zhu and Zhang,

2000). As a consequence, so far, with the exception of

(Costa et al., 2002b; Costa et al., 2002c; Datta and Datta,

2003), there is no validity study on which proximity indices

or clustering methods are more suitable for the analysis of

data from gene expression time series.

Based on this, a data driven comparative study of

clustering methods used in the literature of gene expression

analysis is carried out in this paper. More specifically, five

algorithms are analyzed: agglomerative hierarchical clus-

tering (Eisen et al., 1998); CLICK (Sharan and Shamir,

2002); dynamical clustering (Costa et al., 2002a); k-means

(Tavazoie et al., 1999) and self-organizing maps (Tamayo

et al., 1999). With the exception of the CLICK, all the other

methods are popular in the literature of gene expression

analysis (Quackenbush, 2001; Slonim 2002). Since the ad-

equacy of the clustering algorithm could be dependent on

the proximity metric used, versions of three proximity indi-

ces with support to missing values are used in the experi-

ments (Gordon, 1999): Euclidean distance, Pearson

correlation and angular separation.

All the experiments are performed with data sets of

gene expression time series of the yeast Saccharomyces

cerevisiae. This organism was chosen because there is a

wide availability of public data, as well as the availability of

an extensive functional classification of its genes. The

functional classification will serve as external data infor-

mation for the validation of the clustering results.

In order to evaluate the clustering methods, the vali-

dation method proposed in (Costa et al., 2002c) is used.

This method is based on an adaptation of the k-fold cross-

validation procedure to unsupervised methods. The accu-

racy of the results obtained in the k-fold cross-validation is
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assessed by an external index (corrected Rand), which mea-

sures the agreement between the clustering results and an a

priori classification, such as gene functional classification

or series classification (Jain and Dubes, 1988). Finally, in

order to detect statistically significant differences in the re-

sults obtained by the distinct clustering methods, a boot-

strap hypothesis test for equal means is applied (Efron and

Tibshirani, 1993).

Material and Methods

Clustering methods

CLICK

CLICK (Cluster Identification via Connective Ker-

nels) (Sharan and Shamir, 2002) is a recently developed

method based on graph theory. Such a method is robust to

outliers and does not make assumptions on the number or

structure of the clusters. Although CLICK does not take the

number of classes as an input, by the use of the homogene-

ity parameter, one can force the generation of a larger num-

ber of clusters.

The method initially generates a fully connected

weighted graph, with the objects as vertices and the similar-

ity between the objects as the weights of the edges. Then,

CLICK recursively divides the graph in two, using mini-

mum weight cut computations, until a certain kernel condi-

tion is met. The minimum weight cut divides the graph in

two, in a way that the sum of the weights of the discarded

vertices is minimized. If a partition with only one object is

found, the object is put apart in a singleton set. The kernel

condition tests if a cluster formed by a given graph is highly

coupled, and consequently, if it should not be further di-

vided. In order to do so, the algorithm builds a statistical es-

timator to evaluate the probability that the edges contained

in a given graph belong to a single cluster.

Dynamical clustering

Dynamical Clustering is a partitional iterative algo-

rithm that optimizes the best fitting between classes and

their representation, using a predefined number of classes

(Diday and Simon, 1980). Starting with prototypes values

from randomly selected individuals, the method works on

two alternates steps: an allocation step, where all individu-

als are allocated to the class with the prototype with lower

dissimilarity, followed by a representation step, where a

prototype is constructed for each class.

A major problem of this algorithm is its sensitivity to

the selection of the initial partition. As a consequence, the

algorithm may converge to a local minimum (Jain and

Dubes, 1988). In order to prevent the local minimum prob-

lem, a number of runs with different initializations are exe-

cuted. Then, the best run, based on some cohesion measure,

is taken as the result (Jain and Dubes, 1988). Another char-

acteristic of this method is its robustness to noisy data. In

addition, when particular proximity index and prototype

representations are used, the method guarantees

optimization of local criterion (Diday and Simon, 1980).

With respect to the proximity indices investigated in this

work, only the use of the Euclidean distance version with

data containing no missing data guarantees the

minimization of the squared error.

More formally, this method looks for a partition P of k

classes from an object set E and a vector L of k prototypes,

where each prototype represents one class of P. This search

is done by minimizing the criterion of fitting between L and

P (Diday and Simon, 1980):

∆ ∆( *, *) min{ ( , ) , }P L P L P P L Lk k= ∈ ∈ (1)
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k-means

k-means is another type of iterative relocation algo-

rithm, which is widely used in cluster analysis studies (Jain

et al., 1999). This method is a special case of the dynamical

clustering (Jain et al., 1999). Thus, they share some charac-

teristics, such as robustness to outliers, use of a predefined

number of classes and sensitivity to the initial partition.

Furthermore, like the dynamical clustering method, k-

means also optimizes the squared-error criterion when the

Euclidean distance is used and there is no missing data.

The main distinctions between the k-means and the

dynamical clustering method are that the former only

works with centroid representations of the classes (Jain et

al., 1999), and only one object is reallocated in each alloca-

tion step (dynamical clustering reallocates all objects in

each allocation step). As a result, a strategy on how the ob-

jects are considered with respect to reallocation has to be

defined. One of such strategies is to generate a random or-

der of the input objects (Jain and Dubes, 1988).

Self-organizing map

The Self-Organizing Map (SOM) is a type of neural

network suitable for unsupervised learning (Kohonen,

1997). SOMs combine competitive learning with

dimensionality reduction by smoothing the clusters with re-

spect to an a priori grid. One of the main characteristics of

these networks is the topological ordering property of the

clusters generated. Clusters objects are mapped in neighbor

regions of the grid, delivering an intuitive visual represen-

tation of the clustering. SOMs are reported to be robust and
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accurate with noisy data (Mangiameli et al., 1996). On the

other hand, SOM suffers from the same problems such as

those of dynamical clustering: sensibility to the initial pa-

rameters settings and the possibility of getting trapped in

local minimum solutions (Jain et al., 1999).

The SOM method works as follows. Initially, one has

to choose the topology of the map. All the nodes are linked

to the input nodes by weighted edges. The weights are first

set at random, and then iteratively adjusted. Each iteration

involves randomly selecting an object x and moving the

closest node (and its neighborhood) in the direction of x.

The closest node is obtained by measuring the Euclidean

distance or the dot product between the object x and the

weights of all nodes in the map. The neighborhood to be ad-

justed is defined by a neighborhood function, which de-

creases over time.

Such maps should often have a number of nodes well

above the number of real clusters in the data (Vesanto and

Alhoniemi, 2000). Also, by a visual inspection of the map,

one can select the neighbor nodes that represent each clus-

ter. However, this process is time consuming and open to

subjectivity. In fact, it is not a good practice to include sub-

jective procedures in the validation process. One way to

overcome the problem just described is to cluster the nodes,

after training the map, by using another clustering method.

In this additional step, the number of cluster should be

equal to the number of clusters in the data. The resulting

partition will state which nodes are related to each cluster.

In (Vesanto and Alhoniemi, 2000), k-means and hierarchi-

cal clustering are employed for this task, all of them obtain-

ing good recovery accuracies. For the sake of simplicity, in

this study only the average linkage hierarchical clustering

will be applied to the SOM nodes.

Agglomerative hierarchical clustering

Agglomerative hierarchical methods are procedures

for transforming a distance matrix into a dendrogram (Jain

and Dubes, 1988). These algorithms start with each object

representing a cluster, then the methods gradually merge

theses clusters into larger ones. Intuitively, agglomerative

methods yield a sequence of nested partitions starting with

the trivial clustering in which each item is in a unique clus-

ter, and ending with the trivial clustering in which all items

are in the same cluster.

Among the different agglomerative methods, there

are three broader used variations: complete linkage, aver-

age linkage, and single linkage. These variations differ in

the way cluster representations are calculated; see Jain and

Dubes (1988) for more details. Depending on the variation

used, the hierarchical algorithm is capable of finding non-

isotropic clusters, including well-separated, chain-like, and

concentric clusters (Jain et al., 1999). However, since such

methods are deterministic, individuals can be grouped

based only on local decisions, which are not re-evaluated

once decisions are made. As a consequence, these methods

are not robust to noisy data (Mangiameli et al., 1996).

In this paper, the focus will be on the average linkage

hierarchical clustering method or UPGMA (unweighed

pair group method average), as it has been extensively used

in the literature of gene expression analysis (Eisen et al.,

1998). In such a method, the proximity between two clus-

ters is calculated by the average proximity between the ob-

jects in one group and the objects in the other group.

Due to the fact that the methodology applied in this

work is only suitable for the evaluation of partitions, the hi-

erarchies are transformed into partitions before being eval-

uated. One way to do so is to cut the dendrogram in a certain

level. Also, the hierarchical method can be used as initial-

ization to the k-means and the dynamical clustering. This

practice improves the initial conditions of these partitional

methods that receive the hierarchical results as input (Jain

and Dubes, 1988).

Cluster validity

The evaluation of clustering results in an objective

and quantitative fashion is the main objective of cluster va-

lidity. Despite its importance, cluster validity is rarely em-

ployed in applications of cluster analysis. The reasons for

this are, among others, the lack of general guidelines on

how cluster validity should be carried out, and the great

need of computer resources (Jain and Dubes, 1988). In this

section, a methodology for cluster validity, which will be

used to compare the clustering algorithms analyzed in this

work, is described.

External indices

External indices are used to assess the degree of

agreement between two partitions (U and V), where parti-

tion U is the result of a clustering method and partition V is

formed by an a priori information independent of partition

U, such as a category label (or classification) (Jain and

Dubes, 1988). There are a number of external indices de-

fined in the literature, such as Hubbert, Jacard, Rand and

corrected Rand (or adjusted Rand) (Jain and Dubes, 1988).

One characteristic of most of these indices is that they can

be sensitive to the number of classes in the partitions or to

the distributions of elements in the clusters. For example,

some indices have a tendency to present higher values for

partitions with more classes (Hubbert and Rand), others for

partitions with a smaller number of classes (Jaccard)

(Dubes, 1987). The corrected Rand index, which has its

values corrected for chance agreement, does not have any

of these undesirable characteristics (Milligan and Cooper,

1986). Thus, the corrected Rand index - CR, for short - is

the external index used in the validation methodology used

in this work.

More formally, let U = {u1, . . . , ur , . . . , uR} be the par-

tition given by the clustering solution, and let V = { v1, . . . ,vc

, . . . , vC } be the partition defined by the a priori classifica-

tion. The equation for CR can be defined as follows:
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where nij represents the number of objects that are in clus-

ters ui and vi; ni indicates the number of objects in cluster ui;

n.j indicates the number of objects in cluster vj; and n is the

total number of objects.

CR can take values in [-1,1], where the value 1 indi-

cates perfect agreement between the partitions, whereas

values near 0 (or negatives) correspond to cluster agree-

ment found by chance. In fact, an analysis by Milligan and

Cooper (1986) confirmed that CR scores near 0 when pre-

sented to clusters generated from random data, and showed

that values lower than 0.05 indicate clusters achieved by

chance.

Cross-validation

The comparison of two supervised learning methods

is, often, accomplished by analyzing the statistical signifi-

cance of the difference between the mean of the classifica-

tion error rate, on independent test sets, of the methods

evaluated. In order to evaluate the mean of the error rate,

several (distinct) data sets are needed. However, the num-

ber of data sets available is often limited. One way to over-

come this problem is to divide the data sets into training and

test sets by the use of a k-fold cross validation procedure

(Mitchell, 1997).

This procedure can be used to compare supervised

methods, even if only one data set is available. The proce-

dure works as follows. The data set is divided into k disjoint

equal size sets. Then, training is performed in k steps, each

time using a different fold as the test set and the union of the

remaining folds as the training set. Applying the distinct al-

gorithms to the same folds with k at least equal to thirty, the

statistical significance of the differences between the meth-

ods can be measured, based on the mean of the error rate

from the test sets.

In unsupervised learning (or cluster analysis), when

there is an a priori classification of the data set available,

the comparison between two methods can also be done by

detecting the statistical significance of the difference be-

tween the mean values of a certain external index. But

again, the number of training sets available is also limited.

In (Costa et al., 2002c), a method to overcome this problem

was presented. Such a method, which will be used in this

work, is an adaptation of the k-fold cross-validation proce-

dure for unsupervised methods, as described below.

The data set is, in the unsupervised k-fold cross-

validation procedure proposed in (Costa et al., 2002c), also

divided in k folds. At each iteration of the procedure, one

fold is used as the test set, and the remaining folds as the

training set. The training set is presented to a clustering

method, giving a partition as result (training partition).

Then, the nearest centroid technique is used to build a clas-

sifier from the training partition. The centroid technique

calculates the proximity between the elements in the test set

and the centroids of each cluster in the training partition

(the proximity must be measured with the same proximity

index used by the clustering method evaluated). A new par-

tition (test partition) is then obtained by assigning each ob-

ject in the test set to the cluster with nearest centroid (as

defined in Eq. (3)). Next, the test partition is compared with

the a priori partition (or a priori classification) by using an

external index (this a priori partition contains only the ob-

jects of the test partition). At the end of the procedure, a

sample with size k of the values for the external index is

available.

The general idea of the k-fold cross-validation proce-

dure is to observe how well data from an independent set

are clustered, given the training results. If the results of a

training set have a low agreement with the a priori classifi-

cation, so should have the results of the respective test set.

In conclusion, the objective of the procedure is to obtain k

observations of the accuracy of the unsupervised methods

with respect to an a priori classification, all this with the

use of independent test folds.

Bootstrap two-sample hypothesis testing

Two-sample hypothesis tests are applied to measure

the significance of the difference between the sample

means of two random variables. In this work, these two

samples are formed by the values of the external index pro-

vided by the unsupervised k-fold cross-validation proce-

dure for the two clustering methods to be compared. The

test indicates if a sample mean of a clustering algorithm can

be stated to be superior to the other. The hypothesis test

used in this work is based on bootstrap resampling. The

bootstrap method was chosen due to its capacity to build ac-

curate estimates when a limited number of elements are

available in the samples. Furthermore, the bootstrap

method has the advantage of not making parametric as-

sumptions about the sample distributions. The exact de-

scription of the bootstrap hypothesis test for equal means

can be found in Efron and Tibshirani (1993) page 224.

Data sets

Since there is a wide availability of public data from

the yeast Saccharomyces cerevisiae, as well as the avail-

ability of an extensive functional classification of its genes

allowing the validation of the clustering results, in this pa-

per the focus is on data from this organism. More specifi-

cally, one classification scheme and two data sets from the

yeast are used.

Yeast functional classification

Munich Information Center for Protein Sequences

Yeast Genome Database (MYGD) is the main scheme for

classifying protein function of the yeast organism (Mewes

et al., 2002). This classification scheme is currently com-
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posed of a tree with 249 classes spread over five levels.

Genes can be assigned to more than one class; consequently

the overlap of classes is large, with genes being assigned to

an average of 2.9 classes. Out of the 6,200 known yeast

ORFs (Open Reading Frames), around 3,900 belong to at

least one of the MYGD classes. (Original data available at:

http://mips.sf.de/proj/yeast/catalogues).

These data are used as the external category label in

order to evaluate the accuracy of the clustering results. In

other words, these classification data do not contain any

gene expression data, but they are used in conjunction with

expression data sets, supplying a label for the genes con-

tained in the expression data sets. In fact, two classification

schemes were obtained from these data, the FC and the

REDUCED FC, as described below.

The FC classification scheme is formed by the thir-

teen first level classes of the MYGD, as in (Zhu and Zhang,

2000). These classes are expected to show similar expres-

sion profiles. The REDUCED FC is composed of five

MYGD classes that have shown a high tendency to cluster

together (Eisen et al., 1998). Furthermore, genes belonging

to these classes have been successfully used for building

function prediction classifiers using supervised methods

(Brown et al., 2000).

Yeast all

This data set contains data from five yeast experi-

ments, where 6,200 ORFs had their expression profiles

measured using cDNA microarrays. The ORF profiles con-

tain 71 time points, observed during the following five bio-

logical processes: the mitotic cell division (cycle alpha,

cdc15, elutration); sporulation and diauxic shift (Eisen et

al., 1998). Some of the genes contain missing values, either

because insignificant hybridization levels were detected, or

because the genes were not measured in certain processes.

(Data available at: http://genome-www.stanford.edu/clus-

tering).

Two data sets were devised from the original Yeast

All data set, the FC Yeast All and the Reduced FC Yeast All.

The FC Yeast All data set contains only genes in the FC

classification. A missing data filter was applied to this data

set, excluding profiles with more than 20% of missing at-

tributes. As in Heyer et al. (1999), a final filtering was em-

ployed in order to remove uninformative genes with low

expression levels or with low variance between the time

points.

In these removed ORFs, the expression level did not

vary over time. Thus, these profiles were considered unin-

formative in relation to gene function. In order to apply this

filtering, genes were ranked according to their variance,

where the ones within the 45% lowest values (Heyer et al.,

1999), were removed. In the end, the FC Yeast All data set

contained 1,765 genes. The Reduced FC Yeast All data set

contains only genes from the Reduced FC classification.

Since there is a reduced number of genes in this data set,

only the missing filter was applied, leaving 205 genes.

Mitotic cell cycle (CDC 25)

This data set was obtained in an experiment from the

Yeast organism during the mitotic cell division cycle (Cho

et al., 1998). The set contains the expression profiles mea-

sured with oligonucleotides arrays during 17 time points,

with a similar set of ORFs as the one used in the Yeast All

data set.

Two data sets were also devised from the Mitotic Cell

Cycle, the FC CDC 25 and the Series CDC 25. In the FC

CDC 25 dataset, only genes in the FC classification were

considered. A variance filtering was employed in order to

remove the 45% of the genes with lowest variance. These

data sets did not contain any missing data. The final number

of genes in this data set was 1,869. The Series CDC 25 data

set contains genes belonging to a visual classification of the

series shape performed by Cho et al. (1998). In this classifi-

cation, 420 genes were assigned to one of five known

phases of the cell cycle (some of the genes were assigned to

a multiple phase class). There was no need to pre-process

this data set, as only informative gene profiles were in-

cluded in the classification.

Experiments

The experiments compare five different types of clus-

tering algorithms: SOM, dynamical clustering, k-means,

and dynamical clustering and k-means with initialization

from the hierarchical method. Each of these algorithms was

implemented with versions of three proximity indices

widely used in the literature of gene expression data analy-

sis: Angular Separation (AS), Pearson Correlation (PC) and

Euclidean Distance (ED) (Costa et al., 2002c). As the im-

plementation of the CLICK algorithm used in this work

does not support the Euclidean distance version, such an al-

gorithm was tested only with AS and PC. Furthermore, with

respect to the Euclidean distance version, experiments are

performed with the data vectors in three forms, namely,

original (ED1), normalized (ED2) and standardized (ED3)

values. This yields five distinct settings of proximity indi-

ces and pre-processing.

In order to demonstrate the usefulness of the valida-

tion methodology, a random assignment method was also

included in this evaluation. This method simply assigns

randomly the objects in the input data set to a cluster. The

results (means) obtained with the random assignment

method are taken as the worst case. All other clustering

methods should obtain values signi?cantly higher than it.

The experiments were accomplished by presenting

the four data sets (FC Yeast All, Reduced FC Yeast All, FC

CDC 25 and Series CDC 25) to all these methods and indi-

ces settings, with the exception of the CLICK algorithm

that was presented only to the FC CDC 25 and Series CDC

25 data sets. This was the case for the implementation of the
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CLICK algorithm used which does not support missing

data - from the data sets employed, only FC CDC 25 and

Series CDC 25 data set did not present missing data.

More specifically, for each method, proximity index,

and data set a thirty-fold unsupervised cross-validation was

applied. Afterwards, the mean values of the corrected Rand

index (CR) for the test folds were measured. Next, the mean

of CR obtained by the five settings of proximity indices and

pre-processing were compared two by two, using the boot-

strap hypothesis test with 1,000 bootstrap samples. Ini-

tially, the hypothesis tests only compared the results of

experiments developed with the same clustering methods

and data sets. From this, only the proximity indices with

best accuracy for a given clustering method and data set

were selected (Costa et al., 2002) for further comparison.

Once this selection was accomplished, the clustering algo-

rithms were compared by using hypothesis tests for each

data set.

In order to perform the experiments with dynamical

clustering and k-means methods, the implementation in

Costa et al. (2002a) was used. In terms of the parameters of

these two methods, the number of clusters was set to the

number of a priori classes (the number of clusters was also

set to the number of a priori classes in the other methods),

and the number of distinct initializations used was 100.

In relation to the CLICK method, an implementation

available in the software Expander was utilized. (Expander

available at: http://www.cs.tau.ac.il/~rshamir/expander/

expander.html). As previously mentioned, this implemen-

tation supports neither the Euclidean distance version, nor

missing data. The other parameters were set to their default

value.

The SOM Toolbox for Matlab was used to run the

SOM experiments (SOM Toolbox available at: http//www.

cis.hut.fi/projects/somtoolbox). The original implementa-

tion only upports the Euclidean distance. Thus, in order to

include Pearson correlation and angular separation, modifi-

cations were made in the code. As the SOM requires many

parameterization experiments, in this work only the topol-

ogy was varied. This choice is based on a previous study

with gene expression data. In such a study, the authors

found that the topology was the parameter with the highest

impact on the results (Jonsson, 2001).

In order to set the other parameters of the SOM, a

method available in the SOM toolbox that uses a number of

heuristics to set the parameters was employed. As not all

the results obtained with this parameterization were satis-

factory, another parameterization based on the one used in

Vesanto and Alhoniemi (2000) was used (this

parameterization is refereed to as VESANTO, whereas the

former is referred to as DEFAULT). The VESANTO

parameterization used 10 epochs and a learning rate of 0.5

during the ordering phase. The initial radius was set to the

topology highest dimension and the final radius to half the

highest dimension. In the convergence phase, 10 epochs

and a learning rate of 0.05 were used. The initial radius was

set to half the highest topology dimension minus 1 and the

final radius to 1. In both phases, the neighborhood function

was the Gaussian. With respect to the topology, the follow-

ing procedure was applied. An initial topology is chosen.

Additionally, experiments with a larger and smaller topol-

ogy are also performed. If the initial topology obtains the

best results, then no more experiments are performed. Oth-

erwise, the same process is repeated for the topology with

the best result.

The software R was used with the hierarchical clus-

tering experiments (software available at: http://www.

r-project.org/). As the external index used in this work is

suitable only for partition comparison, the results of the hi-

erarchical methods were supplied as input to the dynamical

clustering and the k-means methods. In order to build the

initial partition from the hierarchical methods, the trees

were run from root to the leaves, then the n first sub-trees

were taken as the clusters (sub-trees with less than 5 ele-

ments were ignored). Next, these n clusters were used to

build the initial partition.

Results

Only the proximity indices with best accuracy for a

given clustering method and data set were selected (Costa

et al., 2002c). These proximity indices are illustrated in Ta-

ble 1.

According to Figure 1, the dynamical clustering ob-

tained a higher accuracy than the other clustering methods.

The null hypotheses were rejected in favor of the dynamical

clustering in comparison to the random assignment and the

hierarchical clustering at α = 0.01, where α stands for the

significance level of the equal means hypothesis test. SOM

and k-means also achieved a significant higher accuracy

than the random assignment and the hierarchical clustering.

In these cases, the null hypotheses were rejected in favor of

the k-means and the SOM in comparison to the random as-

signment (α = 0.02) and the hierarchical clustering

(α = 0.05). The dynamical clustering and the k-means both

with hierarchical initialization also achieved a significantly

higher accuracy than the random assignment and the hierar-

chical clustering. In these cases, the null hypotheses were
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Table 1 - Proximity metrics with best accuracy.

FC

Yeast All

Red. FC

Yeast All

FC

CDC 25

Series

CDC 25

SOM PC PC ED2 PC

Hierarchical Clust. AS PC PC PC

Dynamical Clust. AS ED1 ED2 ED3

k-means AS ED1 ED2 AS

Hierarchical + dynamical AS ED2 AS AS

Hierarchical + k-means AS ED2 ED2 AS

CLICK - - AS PC



rejected in favor of the dynamical clustering and the

k-means in comparison to the random assignment

(α = 0.05) and the hierarchical clustering (α = 0.05).

The mean values of corrected Rand for the experi-

ments with the Reduced FC Yeast All data set are presented

in Figure 2. The random assignment method obtained the

lowest accuracy in comparison to all the other methods.

The null hypotheses were rejected in favor of the SOM, the

hierarchical clustering, the dynamical clustering and the

k-means (with or without hierarchical initialization) in rela-

tion to the random assignment method at a α = 0.01. No

other significant differences were detected among the

methods.

Figure 3 illustrates the mean values of the corrected

Rand of the experiments with the FC CDC 25 data set. The

CLICK method obtained a lower value when compared to

those achieved by the other methods, including the random

assignment. In these cases, the null hypotheses were re-

jected in favor of all the other methods at α = 0.01. The

k-means (with or without hierarchical initialization) and the

SOM obtained significantly higher accuracy than the ran-

dom assignment and the hierarchical clustering. The null

hypotheses were rejected in favor of the SOM and the

k-means at α = 0.01. Dynamical clustering (with or without

hierarchical initialization) also obtained significantly

higher accuracy than the random assignment and the hierar-

chical clustering. The null hypotheses were rejected in fa-

vor of the dynamical clustering at α = 0.05.

Figure 4 shows the mean values of the corrected Rand

for the experiments performed with the Series CDC 25 data

set. The random assignment method obtained the lowest

values in comparison to all the other methods. In these ex-

periments, the null hypotheses were rejected in favor of the

SOM, hierarchical clustering, CLICK, dynamical cluster-

ing and k-means (with or without hierarchical= initializa-

tion) at α = 0.01. No other significant differences were

detected among the methods.

Discussions

In terms of the hierarchical clustering, low accuracies

were achieved in experiments with the FC CDC 25 and FC

Yeast All 25 data sets. This was not the case of the two other

data sets (Reduced FC Yeast All and Series CDC 25), as the

hierarchical clustering obtained accuracies as high as the

other methods. One could conclude that the hierarchical

clustering has some trouble in clustering larger data sets

formed by the complete Functional Classification (FC)

scheme. The clusters in the data sets based on the FC

scheme are not so compact and isolated when compared to

the ones with the Reduced FC and the series shape classifi-

cation. The FC data sets have a larger number of genes and
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Figure 1 - Mean of corrected Rand values from the FC Yeast All experi-

ments.

Figure 2 - Mean of corrected Rand values from the Reduced FC Yeast All

experiments.

Figure 3 - Mean of corrected Rand values from the FC CDC 25 experi-

ments.

Figure 4 - Mean of corrected Rand values from the Series CDC 25 experi-

ments.



their classifications were not devised from gene expression

analysis. Given the lack of robustness of the hierarchical

clustering methods to outliers and noisy data, the low accu-

racies for the FC data sets are expected. These results are

also compatible with other comparative analyses of cluster-

ing methods for gene expression. In Datta and Datta (2003),

the average hierarchical clustering also obtained worse re-

sults than other clustering methods, such as the k-means

and model-based methods. The hierarchical methods also

showed a low stability in the experiments presented in

Costa et al. (2002b).

In the Series CDC 25 experiments, CLICK achieved

the highest mean for the corrected Rand in relation to all the

other methods. On the other hand, this very same algorithm

obtained negative values for the FC CDC 25 data set. As

mentioned before, the CLICK method finds the number of

clusters automatically. This task was perfectly performed

for the Series CDC 25, where six clusters were encountered

in most of the experiments. This was not the case for the FC

CDC 25 experiments, where the number of clusters varied

from around 20 to 26 with the PC and from around five to

seven with the AS. These results suggest that CLICK

showed instability in clustering the FC CDC 25 data set. In

fact, one could argue that CLICK presented similar prob-

lems as those presented by the hierarchical clustering.

However, since only one data set with the complete Func-

tional Classification was used, further experiments are nec-

essary to investigate this issue properly.

As a whole, k-means, dynamical clustering (both with

or without hierarchical initialization) and SOM obtained

high accuracies in all experiments. The use of the hierarchi-

cal initialization does not affect the accuracy of k-means

and dynamical clustering, even if the hierarchical method

alone does not achieve a good accuracy. Indeed, the hierar-

chical initialization reduces the run time of both dynamical

clustering and k-means experiments, as there is no need for

several random initializations.

The SOM has one main disadvantage in relation to

the k-means and the dynamical clustering, since such an al-

gorithm required more complex experiments for selecting

the parameters. On the other hand, SOM returns a topologi-

cal map, where the clusters have neighborhood relations.

This structure is much more informative than simple parti-

tions returned by the k-means and the dynamical clustering.

With respect to the different results achieved with the

data sets used, both the reduced FC Yeast All and the Series

CDC 25 consist of filtered data sets obtained by a computa-

tional clustering analysis followed by an analysis carried

out by a human specialist. These data sets have separable

classes and a reduced level of noise. On the other hand, the

FC Yeast All and the FC CDC 25 are very crude data sets

containing noisy data, inseparable clusters and outliers.

The data sets obtained by gene expression experiments are

more similar to the ones in the second category. Only after

the application of the clustering methods it is possible to

obtain as “nice” data sets as the one in the first class. In

other words, the clustering methods should be able to “eas-

ily” obtain results in the first class; however, in the real

world applications the second class of data set is the one

that is in fact more important.

Regarding the use of gene annotation as an a priori

classification, in FC Yeast All and FC CDC 25 data sets,

where the complete functional classification was used, a

low agreement with the clustering results was found. In

these experiments, the mean values of the corrected Rand

were smaller than 0.05. A previous study (Gertein and

Janssen, 2000), using similar data sets, had already indi-

cated that the functional classification has only a weak rela-

tion to the clustering of gene expression profiles. The

reasons for this are, among others, the vague definitions of

some functions and the great overlap of the classes (Gertein

and Janssen, 2000).

The overlap among classes has also a direct impact on

the value of the corrected Rand index. This is mainly due to

the fact that the correction for randomness contained in the

corrected Rand index considers only hard (crisp) partitions.

Thus, such a correction is too strict for partitions with class

overlap, such as the complete FC used in this work (see

Section Yeast Functional Classification). This is because

the number of disagreements (elements in the same class

but at distinct clusters and vice-versa) grows considerably.

Despite these problems, the corrected Rand is the external

index with the best-reported characteristics. Also, so far,

there is no index suitable to analyze partitions overlapping

classes in the literature.

Finally, it is important to point out that, although the

values obtained for the corrected Rand index with the dif-

ferent clustering methods were low, such values were still

significantly higher than those obtained with the random

clustering method. The latter had corrected Rand values

nearer zero (around 0.01).
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