MTHFR, prothrombin and Factor V gene variants in Turkish patients with coronary artery stenosis

Müge Caner¹, Rifat Bircan², Deniz Sevinç¹, Fehime Benli³, A. Ilter Güney⁴ and Nuri Kurtoglu⁵

¹Department of Medical Biology, Maltepe University, School of Medicine, Istanbul, Turkey.
²Department of Molecular Biology, Namik Kemal University, Faculty of Arts and Sciences, Tekirdag, Turkey.
³Department of Biochemistry, Maltepe University, School of Medicine, Istanbul, Turkey.
⁴Department of Medical Biology, Marmara University, School of Medicine, Istanbul, Turkey.
⁵Department of Cardiology, Safak Hospital, Istanbul, Turkey.

Abstract

Many epidemiological studies have reported an association between hemostatic factors and risk of both coronary and peripheral artery diseases. Using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis, we investigated the association between coronary artery disease and polymorphisms in the methylenetetrahydrofolate reductase (MTHFR C677T and A1298C), prothrombin (G20210A), and factor V (A4070G) genes. We screened these gene variants in 174 subjects who had undergone coronary angiography - 115 patients with patent coronary artery disease (grade 3 vessel disease, i.e., significant coronary stenosis), and 59 healthy controls with grade 0 vessel disease. The analysis of our data did not show any statistically significant association between coronary artery disease (CAD) and the investigated polymorphisms.

Key words: genetic polymorphism, coronary disease, MTHFR gene, prothrombin gene, Factor V gene.

Received: February 1, 2008; Accepted: May 14, 2008.

Many epidemiological studies have reported an association between hemostatic factors and risk of both coronary and peripheral artery diseases. The blood coagulation system is thought to be involved in the pathogenesis of atherosclerotic diseases, and inherited prothrombotic risk factors are supposed to be predisposing to thrombus formation and vascular occlusions (Folsom, 2001). We screened patients with coronary artery disease (CAD) for polymorphisms in the MTHFR (C677T and A1298C), Prothrombin (G20210A), and Factor V (A4070G; Leiden) genes, because they were suggested to be probable inherited risk factors for CAD (Alhenc-Gelas et al., 1999; Redondo et al., 1999; Varela et al., 2001).

This case-control study involved 174 individuals who had undergone coronary angiography. The patient group included 115 subjects with grade 3 vessel disease, i.e., significant coronary stenosis, and the control group was formed by 59 subjects with grade 0 vessel disease. The distributions of patients and controls according to gender, family history of coronary disease, and comorbidities are shown in Table 1. No statistically significant associations between gender or traditional risk factors and the presence of coronary artery stenosis were detected, except in relation to hypercholesterolemia.

Genomic DNA was extracted from venous blood samples by the standard phenol-chloroform method. Polymorphisms in the candidate genes were investigated by polymerase chain reaction followed by restriction fragment

Table 1 - Comparison between patients with coronary disease and controls.

<table>
<thead>
<tr>
<th></th>
<th>Patients (n = 115)</th>
<th>Controls (n = 59)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>86 (74.8%)</td>
<td>37 (62.7%)</td>
<td>0.595</td>
</tr>
<tr>
<td>Female</td>
<td>29 (25.2%)</td>
<td>22 (37.3%)</td>
<td>0.143</td>
</tr>
<tr>
<td>Mean age ± SD</td>
<td>56 ± 12</td>
<td>54 ± 16</td>
<td>0.729</td>
</tr>
<tr>
<td>Family history</td>
<td>38 (33%)</td>
<td>20 (33.9%)</td>
<td>0.832</td>
</tr>
<tr>
<td>Smoking</td>
<td>46 (40%)</td>
<td>18 (30.5%)</td>
<td>0.219</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>27 (23.5%)</td>
<td>10 (16%)</td>
<td>0.319</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>46 (40%)</td>
<td>14 (23.7%)</td>
<td>0.033*</td>
</tr>
<tr>
<td>Hypertension</td>
<td>52 (45%)</td>
<td>25 (42.4%)</td>
<td>0.721</td>
</tr>
</tbody>
</table>
length polymorphism analysis (PCR-RFLP) as follows: C677T (Frosst et al., 1995) and A1298C (van der Put et al., 1998) of the MTHFR gene, G20210A of the prothrombin gene (Poort et al., 1996), and A4070G of the Factor V-Leiden gene (Alhenc-Gelas et al., 1999). No differences were found between patients and controls in terms of genotype and allele frequencies in relation to the four genetic polymorphisms studied (Table 2).

Our results are consistent with those of Yilmaz et al. (2006), who did not find an association between MTHFR C677T and increased risk for CAD in Turkish patients either. In contrast to these results, two other studies showed a significant increase in the frequency of the MTHFR C677T polymorphism among patients with CAD (Almawi et al., 2004, in a sample from the Bahrain population; Ghazouni et al., 2008, in Tunisians). However, concerning the MTHFR A1298C polymorphism, Ghazouni et al. (2008) did not find a significant difference between patients and controls, in line with the present study.

The carrier frequency of the factor V-Leiden (G1691A) and prothrombin G20210A gene polymorphisms did not differ between patients and controls in the study of Almawi et al. (2004), in accordance with our results. Similarly, Baykan et al. (2001) did not find an increased frequency of factor V-Leiden in patients presenting with CAD either.

In conclusion, although the results concerning the association of the MTHFR C677T polymorphism with CAD are still controversial, the factor V-Leiden and prothrombin G20210A polymorphisms do not seem to confer an increased risk for CAD in the different populations studied.

References

Associate Editor: Paulo A. Otto

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.