Antiproliferative effects of Tubi-bee propolis in glioblastoma cell lines

Kleiton Silva Borges¹, María Sol Brassesco², Carlos Alberto Scrideli², Ademilson Espencer Egea Soares¹ and Luiz Gonzaga Tone¹,²

¹Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. ²Divisão de Pediatria Oncológica, Departamento de Pediatria, Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.

Abstract

Propolis is a resin formed by a complex chemical composition of substances that bees collect from plants. Since ancient times, propolis has been used in folk medicine, due to its biological properties, that include antimicrobial, anti-inflammatory, antitumoral and immunomodulatory activities. Glioblastoma is the most common human brain tumor. Despite the improvements in GBM standard treatment, patients’ prognosis is still very poor. The aim of this work was to evaluate in vitro the Tubi-bee propolis effects on human glioblastoma (U251 and U343) and fibroblast (MRC-5) cell lines. Proliferation, clonogenic capacity and apoptosis were analyzed after treatment with 1 mg/mL and 2 mg/mL propolis concentrations for different time periods. Additionally, glioblastoma cell lines were submitted to treatment with propolis combined with temozolomide (TMZ). Data showed an antiproliferative effect of tubi-bee propolis against glioblastoma and fibroblast cell lines. Combination of propolis with TMZ had a synergic anti-proliferative effect. Moreover, propolis caused decrease in colony formation in glioblastoma cell lines. Propolis treatment had no effects on apoptosis, demonstrating a cytostatic action. Further investigations are needed to elucidate the molecular mechanism of the antitumor effect of propolis, and the study of its individual components may reveal specific molecules with antiproliferative capacity.

Key words: glioblastoma, propolis, temozolomide, U251, U343.

Received: August 6, 2010; Accepted: February 4, 2011.
lines, associated or not with TMZ, and in one non-neoplastic fibroblast cell line.

Propolis samples obtained from the stingless “Tubi” beehives (*Scaptotrigona sp*) were collected in the Serra do Corda region (Maranhão State, Brazil). Tubi-bee propolis extracts were obtained as previously described (Farnesi et al., 2009). Briefly, propolis was ground and an ethanol extract was prepared, as follows: 30 g of propolis/100 mL ethanol (70%). The solution was kept at room temperature for 20 days and shaken once a day. After filtration, the solvent was totally evaporated in a water bath, at temperatures not exceeding 50 °C. For cell assays the crude extract was diluted in dimethylsulphoxide (DMSO, Sigma-Aldrich).

TMZ, known commercially as Temodal®, was acquired from Schering-Plough Brazil and diluted according to the manufacturer’s instructions. The capsule content was required from Schering-Plough Brazil and diluted according to the manufacturer’s instructions. The capsule content was dissolved in dimethylsulphoxide (DMSO, Sigma-Aldrich).

Aliquots of the drug were stored at -20 °C. TMZ concentrations of 20, 50 and 100 μM were used in the experiments.

Human adult glioblastoma cell lines U251 and U343 and the human fibroblast cell line MRC-5 were purchased from the American Type Culture Collection. Cells were cultured in HAM F10 medium (Gibco BRL, Life Technologies®, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum, penicillin (100 U/mL) and streptomycin (100 μg/mL), at 37 °C in a humidified 5% CO2 incubator.

The effects of propolis on clonogenic capacity were evaluated by a clonogenic assay (Franken et al., 2006). After trypsinization, single cell suspensions of 300 cells were seeded into 6-well plates and treated with propolis extract at the concentrations of 1 and 2 mg/mL for 48 h. After this treatment, the culture medium was removed and replaced with extract-free medium. The cell cultures were then incubated for 7-10 days and thereafter the colonies were rinsed with PBS, fixed with methanol and stained with Giemsa. All colonies with > 50 cells were counted. Assays were performed in triplicate.

For the proliferation assay, cells were seeded on 96-well plates (1x10^5 cells/well). After 24 h, the medium was replaced with fresh media containing the treatment (propolis, TMZ or DMSO at 0.5%) and then cultured for 24, 48 and 72 h. After the treatment, the culture medium was removed and replaced with medium containing 10 μL of XTT dye (3 mg/mL) (XTT II; Roche Molecular Biochemicals, Indianapolis, USA) in each well. The plates were incubated for 2 h at 37 °C, and the formazan product was measured at 450 nm in an iMark microplate reader (Bio-Rad Laboratories). All experiments were performed in triplicate. Values are shown as mean ± SD.

For apoptosis assessment, a total of 3x10^5 cells were seeded in 25 cm^2 tissue culture flasks containing 5 mL of culture medium. After 24 h, the medium was replaced, propolis and DMSO were added, and then the cells were cultured for additional 48 h. Apoptotic cells were recognized by nuclear condensation and fragmentation, according to Lee and Shaeter (1999). Treated cells were centrifuged and incubated for 5 min at 37 °C with bisbenzimide (Hoechst 33342), propidium iodide and fluorescein diacetate (Sigma Chemical Co., St. Louis, USA). Then, samples were mounted on slides, coverslipped and analyzed by fluorescence microscopy with a triple filter. Cells were scored and categorized according to differential staining: (1) normal: blue nucleus and green cytoplasm, (2) apoptotic: fragmented blue nucleus and green cytoplasm, and (3) necrotic: spherical red nucleus. 500 nuclei were analyzed per treatment.

One-way or two-way ANOVA followed by the appropriate post-hoc test (Bonferroni) were used to check for significant differences between groups (differences between doses or times). Differences were considered significant at p < 0.05.

To determine the TMZ concentration for combination with propolis, U343 and U251 cells were submitted to different concentrations of TMZ for 24, 48 and 72 h. The TMZ concentration chosen for combined treatment was 50 μM, which reduced proliferation at 48 h for U251 and U343 cell lines (Figure 2).

U251, U343 and MCR-5 cell lines were treated with propolis extract at the concentrations of 1 and 2 mg/mL for 24, 48 and 72 h. The glioblastoma cell lines were also treated with a propolis concentration of 2 mg/mL associated with 50 μM of temozolomide. Cell viability was determined by an XTT assay, as described above.

Propolis extract concentrations inhibited growth of the three cell lines when compared with DMSO (0.5%) (p < 0.05) (Figure 1). For cell line U251, proliferation inhibition was observed at 24, 48 and 72 h corresponding to a 10, 24 and 46% decrease with the 1 mg/mL dose, and a 15, 32 and 59% decrease with the 2 mg/mL dose, respectively. However, there was no statistically significant difference between the concentrations for this cell line at the times studied (Figure 1A).

In cell line U343, a decrease in proliferation was observed at 24, 48 and 72 h for both dosages, corresponding to a 14, 21 and 30% decrease for the 1 mg/mL, and a 30, 42 and 48% decrease for the 2 mg/mL dose. For this cell line, all treatments except the 72 h treatment showed statistically significant differences between the concentrations (Figure 1B).

Statistically significant effects of dose and time dependence were observed only for the U343 cell line (p < 0.05). The association of propolis and TMZ showed a synergistic effect on both glioblastoma cell lines at all times analyzed, except for the U343 cell line at 72 h (Figure 1A and B). In the fibroblast MRC-5 cell line a decrease in proliferation was also observed, although this effect was neither dose- nor time-dependent (Figure 1C).
In both the U251 and U343 cell lines treated with 1 and 2 mg/mL propolis extract for 48 h, a decrease in colony formation capacity was observed; however, there was no difference between the two treatments (data not shown).

To determine the occurrence of apoptosis in GBM cells treated with the propolis extract, the cells were differentially stained. Apoptosis was not observed after the treatment with propolis at neither of the concentrations tested. The methodology applied also allowed the detection of necrotic cells, observed at a low number and without differences between treatments (data not shown).

Propolis, a complex mixture of plant metabolites, shows a broad spectrum of biological activities including antibiotic, antioxidative, anti-inflammatory and anticancer effects (Bankova et al., 1983; Marcucci, 1995; Banskota et al., 2001). Its cytotoxicity in cultures of human and animal tumor cells, including breast carcinoma, melanoma, colon and renal carcinoma cell lines, has been frequently reported in the literature (Khalil, 2006).

The present study showed that propolis extract inhibited proliferation in glioblastoma and fibroblast cell lines, as already demonstrated by previous studies. Propolis extract from the Netherlands showed an interesting antiproliferative activity against highly metastatic liver murine colon 26-L5 carcinoma cells (Banskota et al., 2000). A butanolic Greek propolis extract was also found to be cytotoxic in two malignant human cell lines (HT-1080 fibrosarcoma and HT-29 colon adenocarcinoma), whereas it was not equally toxic when tested in normal human skin fibroblasts (Pratsinis et al., 2010).

In cell line U343, the antiproliferative effect of propolis was dose- and time-dependent, suggesting that this cell line is more sensitive than U251 that did not present the same effect. These differences could be associated with p53 status (mutant or wild type). Cell line U343, but not U251, carries the wild type gene (Ishii et al., 1999) and the antiproliferative effects of propolis may be p53-dependent. Other studies have shown increased expression of p53 after treatment with different propolis extracts (Weng et al., 2007; Ishihara et al., 2009; Xuan et al., 2010). Several functions and activities are attributed to p53, and it also acts in different cellular metabolism processes, such as cell cycle, apoptosis, senescence and DNA repair (Joerger and Fersht, 2008).

The combination of propolis with temozolomide, a chemotherapeutic drug used in the treatment of glioblastoma which produces DNA alkylation (Esteller et al., 2000), evidenced synergistic antiproliferative effects, demonstrating the ability of propolis to predispose cells to the action of chemotherapy (Figures 1A and B). However, this effect should be further investigated.
The effects observed in this work can be related with the chemical composition of propolis, which is highly dependent on the flora of the region where it is collected. Sawaya et al. (2009) studied the same Tubi-bee propolis used in this work and showed that its composition varied seasonally. The mass spectra ions found in this extract were m/z 371, 373, 401 and 471. This latter was the more important one; its formula C_{30}H_{47}O_{4} suggests that it has at least one acid function. Electrospray Ionization – Mass Spectrometry (ESI-MS) of these ions showed to be compatible with terpenes and with acid groups. All are marker ions of Schinus terebenthifolius, also known in Brazil as “aroêira mansa”, a preferred source of resins in stingless bee propolis in many regions of Brazil.

Propolis from temperate zones predominantly contains phenolic compounds, including flavonoids and cinnamic acid derivatives (Marcucci, 1995). On the other hand, diterpenes and prenylated compounds, which are virtually absent in propolis from temperate zones, have been reported to be the major constituents of propolis from tropical South America, along with lignans, flavonoids and other classes of compounds (Sawaya et al., 2009).

Several reports have shown apoptosis induction caused by propolis extracts (Weng et al., 2007; Szliszka et al., 2009; Xuan et al., 2010). However, in the present study, this effect was not observed, suggesting that in the concentrations used this type of propolis presents only cytostatic effects.

In summary, this investigation of the potential anti-proliferative effects of propolis in human glioblastoma and normal fibroblast cell lines showed a strong inhibitory effect on the proliferation of all cell lines tested. Dose and time dependence were only observed for cell line U343. Moreover, the association of propolis with temozolomide produced synergistic antiproliferative effects. Propolis treatment also inhibited the clonogenic capacity in GBM cell lines, but the antitumor effects observed here were not caused by apoptosis. Further investigations are needed to elucidate the molecular mechanism of the antitumor effect of propolis, and the study of its individual constituents may reveal specific molecules with antiproliferative capacity.

Acknowledgments

Financial Support by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, process nº 2009/50118-2), and FAPESP fellowships to KSB (2010/08699-5) and MSB (2006/04827-3) are acknowledged.

References


License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.