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Abstract

The objectives of this study were to 1) compare four models for breeding value prediction using genomic or pedigree
information and 2) evaluate the impact of fixed effects that account for family structure. Comparisons were made in a
Nellore-Angus population comprising F2, F3 and half-siblings to embryo transfer F2 calves with records for overall
temperament at weaning (TEMP; n = 769) and Warner-Bratzler shear force (WBSF; n = 387). After quality control,
there were 34,913 whole genome SNP markers remaining. Bayesian methods employed were BayesB (~� = 0.995 or
0.997 for WBSF or TEMP, respectively) and BayesC (� = 0 and ~�), where ~� is the ideal proportion of markers not in-
cluded. Direct genomic values (DGV) from single trait Bayesian analyses were compared to conventional pedi-
gree-based animal model breeding values. Numerically, BayesC procedures (using~�) had the highest accuracy of all
models for WBSF and TEMP (�

�

�gg = 0.843 and 0.923, respectively), but BayesB had the least bias (regression of per-
formance on prediction closest to 1, ��y,x = 2.886 and 1.755, respectively). Accounting for family structure decreased

accuracy and increased bias in prediction of DGV indicating a detrimental impact when used in these prediction
methods that simultaneously fit many markers.
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Introduction

Expected progeny differences (EPD) are widely used

for selection in the US beef cattle industry. Current interna-

tional research efforts are focused on incorporating

genomic prediction methods into national evaluations that

produce EPD (Hayes et al., 2009b; VanRaden and Sullivan,

2010; Saatchi et al., 2011, 2012, 2013; Rius-Vilarrasa et

al., 2012). The landmark paper by Meuwissen et al. (2001)

described genomic predictions using Bayesian inference

that they believed capitalized on linkage disequilibrium

(LD) between observed markers and unobserved quantita-

tive trait loci (QTL).

For these methods, prediction procedures can be a

two-part process using the Bayesian framework of 1) train-

ing to calculate substitution effects of markers in historical

data using both phenotypes and genotypes; and 2) using

markers genotyped in individuals outside the training data

to calculate direct genomic values (DGV) based on substi-

tution effects estimated in training. The size of the refer-

ence (i.e., training) population and its relationship to the

prediction population are important considerations to

achieve higher precision (accuracy) of genomic breeding

values in animals with only genomic information available

(de Roos et al., 2009; Ibáñez-Escriche et al., 2009; Habier

et al., 2010, 2013; Kizilkaya et al., 2010; Saatchi et al.,

2010; Toosi et al., 2010).

Relatedness among animals and between breeds (in

crossbred or composite populations) can directly impact

prediction accuracy (de Roos et al., 2009; Ibáñez-Escriche

et al., 2009), at least in part due to inconsistent LD patterns

among cattle breeds (Gautier et al., 2007; Bovine HapMap

Consortium, 2009). Few studies have investigated the use

of genomic prediction models using field or research data

from crossbred populations (Hayes et al., 2009a; Snelling

et al., 2012). The objectives of this study were to 1) evalu-

ate and compare four models (three Bayesian using

genomic information and a pedigree-based animal model)

in predicting genetic merit using all animals in the training

population; and 2) evaluate the effects on genetic merit pre-

diction of including or excluding fixed effects to account

for family structure. These objectives were investigated us-

ing single trait analyses of two traits measured in a Nel-

lore-Angus crossbred population.
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Materials and Methods

Cattle, genotypes, and traits

The cattle population, genotypes, and traits used in

this study were previously described in Hulsman Hanna et

al. (2014). Briefly, the cattle population consisted of Nel-

lore-Angus F2 (embryo transfer and natural service recipro-

cal crosses), F3 and natural service half-siblings to embryo

transfer F2 animals. The population was characterized by 3

distinct cycles (designated as Cycle 1, 2, and 3), where Cy-

cle 1 included embryo transfer Nellore-Angus F2 and natu-

ral service half-sibling calves, Cycle 2 included natural

service F2 calves, and Cycle 3 included natural service F3

calves. All procedures involving animals were approved by

the Texas A&M Institutional Care and Use Committee. An-

imals were genotyped on the Bovine SNP50 Version 1 & 2

assays (Illumina Inc., San Diego, CA) and, after quality ed-

its, had 34,913 SNP available for genomic prediction anal-

yses.

Overall temperament at weaning (TEMP), a subjec-

tive measurement on a 1 to 9 scale, where 1 is docile and 9

is wild or unruly (n = 772) was used in this study. Four eval-

uators scored each animal in this study for TEMP, but aver-

age TEMP score across all evaluators was used in subse-

quent analyses. Warner-Bratzler shear force (WBSF), a

quantitative measurement using a United Testing machine

(United 5STM-500, Huntington Beach, CA) with a 11.3 kg

load cell and a v-notch WBSF attachment, was used to mea-

sure the peak force required to shear each core and reflect

meat tenderness. Only electrically-stimulated data was

available for all steers in Cycles 1, 2, and 3 and were there-

fore used. The average shear value of the electrically stimu-

lated side of each steer, averaged across all shears per steak,

for 14-d aged steaks (n = 390) were used for analyses in this

study.

Statistical analysis

In a previous study with these animals, Hulsman

Hanna et al. (2014) fitted a model for TEMP that included

fixed effects of sex (n = 2), family nested within sire

(n = 31), birth year-season combinations (n = 10), and tem-

perament scoring pen nested within birth year-season com-

binations (n = 42). The corresponding model for WBSF

included fixed effects of type of cross (an effect based upon

the combination of sire and dam breeds, n = 12) and date of

shear (n = 16).

Fixed effects that accounted for family structure such

as family nested within sire or type of cross may comple-

ment or be confounded with genomic information in asso-

ciation analyses; the effect of inclusion of such effects on

accuracy of prediction of breeding values is unknown. Ge-

notype frequency differences between families could result

in false associations while training markers for prediction

of breeding values using Bayesian methods (Lander and

Schork, 1994; Marchini et al., 2004; Janss et al., 2012).

Previous cattle studies typically include polygenic effects

to account for family (e.g., Michal et al., 2006; Alexander

et al., 2009). In addition, studies with the current cattle pop-

ulation (Riley et al., 2013; Hulsman Hanna et al., 2014) uti-

lized fixed effects to account for family structure in associ-

ation analyses, but as the effect on genomic predictions of

including those effects is unknown, analyses in this study

were evaluated with or without significant family structure

fixed effects. A traditional animal model that accounted for

family in the conventional manner using pedigree was also

fitted as a control.

For both traits, only those animals with phenotypes,

genotypes and all relevant fixed effects required in the

model were used in the study (n = 769 or 387 for TEMP or

WBSF, respectively). Correlations between TEMP and

WBSF phenotype records were previously calculated using

either Pearson’s or Spearman’s Rank correlation coeffi-

cients in Hulsman Hanna et al. (2014), and TEMP and

WBSF were not found to be correlated in either analysis

(p > 0.05).

Bayesian methods employed

BayesB (Meuwissen et al., 2001) and BayesC (Kizil-

kaya et al., 2010; Habier et al., 2011) methods were utilized

in this study as in Hulsman Hanna et al. (2014). Both meth-

ods require that �, a proportion of markers not contributing

to the trait of interest, is known. The best fitting � (desig-

nated as ~�) was determined in Hulsman Hanna et al. (2014)

as the value that accounted for the majority of genetic varia-

tion with the fewest number of markers. For TEMP and

WBSF, ~� was determined to be 0.997 and 0.995, respec-

tively. An additional analysis was run using BayesC proce-

dures with � = 0 (i.e., all markers were included in the

model). Analyses were performed using GenSel software

(see Internet References section) to generate DGV for ani-

mals included in the training group by summing across pos-

terior means of random marker effects multiplied by the

centered number of copies of the B allele for each individ-

ual. All animals with data available were used in the train-

ing population for comparison purposes, where cross-vali-

dation procedures were conducted following this study and

will be reported separately. For each trait, comparisons

were made between DGV and estimated breeding values

(EBV) produced using a traditional animal model (i.e., tra-

ditional pedigree-based Best Linear Unbiased Predictions).

Estimated breeding values from an animal model were gen-

erated using ASReml software (see Internet References

section), fitting the same fixed effects as used in genomic

analyses, but with random animal effects with variance-

covariance determined from pedigree information, and ran-

dom uncorrelated residuals.

Comparison criteria for breeding value prediction

Pearson correlation coefficients (r) between true

breeding values (BV) and direct genomic values (DGV;
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i.e., BV based on genomic prediction) can be used in simu-

lations to assess accuracy (Meuwissen et al., 2001). Simple

correlation coefficients between de-regressed EBV and

DGV can be used to assess accuracy with field data, but that

correlation underestimates true accuracy (Saatchi et al.,

2012). Accuracy of EBV (or DGV) predicted in this study

was calculated following the standardization method pro-

posed by Saatchi et al. (2011) to adjust for underestimation,

and takes the form of:

Accuracy gg

p,EBV

g g

� �� ,
�

�

�
�

� �

where �
p,EBV

is the covariance of phenotype or trait with ei-

ther EBV or DGV, �
�g is the standard deviation of the addi-

tive genetic effects estimated from the training population

reported as the posterior mean or variance estimate (i.e., the

mean estimate over the iterations or chains run) of the anal-

ysis conducted, and �g is the standard deviation of the ad-

ditive genetic effects from the population (i.e., animals with

phenotypic and genotypic information), which is the ex-

pected additive genetic effects of that population for the

given trait and is calculated as:

� �g g p� �2 2 2h �

where h2 is the heritability of the trait calculated during the

analyses (e.g., the genomic heritability for Bayesian meth-

ods and based on variance components for the animal

model), and �p

2 is the phenotypic variance calculated from

animals with genotypic data. The simple linear regression

coefficient (�� y,x ), which can be used to give an indication of

biasedness (Saatchi et al., 2013) was calculated. The simple

linear regression coefficient (�� y,x ) is the regression of phe-

notype on EBV (or DGV) and takes the form of:

��
�

�
EBV,p

EBV,p

EBV

2
�

where �
EBV,p

is the covariance of EBV (or DGV) and phe-

notype and �
EBV

2 is the variance of the EBV (or DGV) cal-

culated from the DGV or EBV produced in that respective

analysis using the sample variance function in Microsoft

Excel 2013. This regression parameter should be 1 if unbi-

ased (Saatchi et al., 2011, 2013).

The relative ranking of EBV (or DGV) is critical in

determining candidates that will be selected and this was

assessed in two ways: 1) using Spearman Rank correlation

coefficients and 2) coarser assessments of rank changes

calculated as the percentage and number of individuals

whose EBV (or DGV) were in different quartiles from dis-

tinct analyses.

Results

Breeding value prediction

The estimates of heritability for WBSF and TEMP

using an animal model (single trait analysis, additive ge-

netic component only) were 0.055 � 0.091 and 0.35 �

0.115, respectively. Originally, the type of cross effect was

fitted for WBSF analyses using the animal model. This re-

sulted in a heritability estimate of zero, however, and was

subsequently excluded from runs using the animal model.

Posterior means of genomic heritability estimated through

Bayesian methods were higher for WSBF, but lower for

TEMP (Table 1).

EBV from animal models for WBSF and TEMP were

compared to DGV from three Bayesian methods with and

without inclusion of fixed effects to account for significant

family structure (Tables 2-4). Numerically, BayesC models

with ~� had the highest accuracy for either trait, regardless

whether fixed effects for family structure were included or

not (Table 1). The simple linear regression coefficient

(�� y,x ) of DGV on phenotype was closest to 1 for BayesB for

both traits and either statistical model, indicating less bias

for that method. All analyses had significant Spearman

rank correlation coefficients (Table 4) for trait breeding

values predicted from the fitted models. Inclusion of fixed

effects to account for family structure resulted in lower

Spearman Rank correlation coefficients for DGV from any

Bayesian model compared with EBV from a traditional ani-

mal model excluding such fixed effects. Spearman Rank

correlation coefficients for EBV with DGV were always

lower than those among DGV from the fitted Bayesian

models. In general, correlation coefficients for DGV esti-

mated from models that included fixed effects for family

structure were lower, indicating substantial influence of

that effect on the relative ranking of animals.

No more than 2% of individuals had EBV in different

analyses that were more than 2 quartiles apart for WBSF or

TEMP (Tables 2 and 3). When fixed effects accounting for

family structure were included in the model, WBSF and

TEMP were similar in the percentage of animals that

changed n quartiles, although that percentage for WBSF

was typically numerically lower than TEMP. When the sta-

tistical model did not include fixed effects for family struc-

ture, TEMP had a larger reduction in the number of animals

(and, therefore, lower percentage) that changed n quartiles.

When the statistical model included fixed effects ac-

counting for family structure, between Bayesian analyses

more than 71% of the DGV remained in the same quartile

for either trait, but less than 55% were in the same quartile

when comparing DGV from any Bayesian analysis to EBV

from the animal model for that respective trait (Tables 2

and 3). Exclusion of fixed effects for family resulted in

more stable (relative to quartile ranks) across-analysis esti-

mation, where over 80% were estimated in the same quar-
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tile with the Bayesian analyses, and approximately 71% for

any Bayesian estimation with those from animal models

(Tables 2 and 3).

Discussion

The heritability estimate for WBSF is low in compar-

ison to most values reported for Bos taurus cattle with elec-

trically-stimulated carcasses, which have ranged from 0.11

to 0.53 depending on breed or cross and number of mea-

sured animals (Shackelford et al., 1994; reviewed by

Minick et al., 2004). Although the estimate of heritability

for WBSF did not differ from zero in the present study, oth-

ers have reported low values using Bos indicus cattle due to

an apparently low additive genetic component for this trait

in these types of cattle (Riley et al., 2003; Smith et al.,

2007). The effect of electrical stimulation on these car-

casses could be reducing variation in WBSF resulting in

lower estimates of heritability. Reported estimates of

heritability for temperament measured as flight speed have

been reported as high as 0.40 (Burrow, 2001) and the esti-

mate of 0.35 using an animal model from the present study

is consistent with those estimates.

Traditional animal models account for family struc-

ture using pedigree information (Henderson, 1973, 1975),

but with the inclusion of genomic information, differences

in genotype frequency due to family structure could lead to

false associations, and therefore impact the accuracy of

DGV. Results from the present study indicated that inclu-

sion of fixed effects to account for differences between

families decreased accuracy and increased bias associated

with prediction of DGV in this crossbred population. When

fixed effects for family structure were not included,

Bayesian methods were more accurate, had less bias, and

had less re-ranking between analyses compared to an ani-

mal model.

As all animals with data available were included in

the training population, accuracy was expected to be mod-

erately high, even though the sample sizes were lower than

1,000 individuals (the typical standard minimum for run-

ning genetic evaluations) because the information used to

estimate effects were from those animals. Without includ-

ing family structure fixed effects, accuracy for Bayesian

and animal model analyses were higher than may typically

be expected given the sample sizes, but training population

accuracies are not typically reported and, therefore, com-

parisons are not available. Although all analyses showed

634 Hulsman Hanna et al.

Table 1 - Genetic parameter estimates ( �h 2 , �g

2 , �
�g

2 and �EBV

2 ), prediction accuracies (�
�

� gg), and linear regression coefficients (�� y,x) for Warner-Bratzler shear

force and overall temperament at weaning for 4 models1.

Family structure fixed effect included2 Family structure fixed effect excluded2

BayesC (� = 0) BayesC (
~
�) BayesB (

~
�) BayesC (� = 0) BayesC (

~
�) BayesB (

~
�) Animal model

Warner-Bratzler shear force

�h 2 0.155 0.136 0.234 0.138 0.148 0.236 0.055

�g

2 0.064 0.056 0.097 0.057 0.061 0.097 0.023

�
�g

2 0.054 0.047 0.084 0.049 0.052 0.085 0.020

�EBV

2 0.011 0.009 0.023 0.010 0.012 0.026 0.002

�

�

� gg 0.787 0.795 0.775 0.841 0.843 0.823 0.717

�� y,x
4.157 4.610 3.030 4.359 4.115 2.886 9.326

Overall temperament at weaning

�h 2 0.210 0.206 0.227 0.278 0.274 0.271 0.350

�g

2 0.893 0.876 0.965 1.181 1.164 1.154 1.487

�
�g

2 0.740 0.721 0.802 1.025 1.010 1.004 1.313

�EBV

2 0.182 0.193 0.232 0.558 0.562 0.563 0.629

�

�

� gg 0.671 0.702 0.698 0.918 0.923 0.918 0.862

�� y,x
2.996 2.885 2.646 1.810 1.782 1.755 1.916

1
�h 2 is the estimate of heritability, where �h 2 for the Bayesian models is the posterior mean of the genomic heritability, �g

2 is the additive genetic variance

calculated as �h 2

p� �2 , which provides an estimate of what the additive genetic variance is expected to be in that population for the given trait. �p

2 = 0.413 or

4.253 for Warner-Bratzler shear force or overall temperament at weaning, respectively, and is the estimate of phenotypic variance from the data. �
�g

2 is the

posterior mean or variance estimate of additive genetic variance from the training potulation calculated in that respective analysis. �EBV

2 is the variance of

the estimated breeding values estimated using either Bayesian or animal model procedures, where
~
� = 0.995 or 0.997 for Warner-Bratzler shear force or

overall temperament at weaning, respectively, using genomic information in Bayesian models.
2Family structure fixed effect refers to family nested within sire or type of cross (an effect based upon the combination of sire and dam breeds, n = 12) for

overall temperament at weaning or Warner-Bratzler shear force, respectively.



bias in the estimates, it was reduced when the sample size

increased (e.g., TEMP vs. WBSF), which was expected.

Habier et al. (2013) investigated genomic BLUP and

its ability to capture relationships, model LD and exploit

cosegregation (the deviation from independent segregation

of alleles if loci are linked). They found that genomic

BLUP can exploit LD, cosegregation, and additive-genetic

relationships captured by SNP, but suggest that Bayesian

methods with t-distributed priors (e.g., BayesB or BayesC

in this study) may be more beneficial to account for rapid

decay in LD. This would explain why the Bayesian meth-

ods utilized in this study did not need fixed effects to ac-

count for family structure and further suggested that

inclusion of those fixed effects detrimentally impacted the

ability of Bayesian methods to utilize genomic information

from the current population.

Simulation studies have reported superior accuracy

values from Bayesian methods relative to traditional ani-

mal models (e.g., Meuwissen et al., 2001; Piyasatian et al.,

2006). Habier et al. (2011) concluded that the optimal

Bayesian modeling method to use was trait dependent

when they compared six Bayesian models. In the case of

TEMP and WBSF, there was little difference between

Bayesian models, although BayesC procedures using ��had

numerically higher accuracies, but larger bias than BayesB

for both traits.

As accuracy and the regression coefficient were cal-

culated using genetic parameter estimates from the respec-

tive analyses (see Table 1), it is interesting to note the

differences seen when comparing the variance of the breed-

ing values estimated (�
EBV

2 ; either DGV or EBV, which are

technically estimates of additive genetic effects and should
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Table 2 - Comparison of the number and percentage of individuals with estimated breeding values for Warner-Bratzler shear force that changed n

quartiles between any two analyses.

Number of individuals that changed n quartiles1

With family structure fixed effect3 Without family structure fixed effect3

Models compared2 1 2 3 1 2 3

BayesC (� = 0) vs. BayesC (
~
�) 28 (7.24%) 0 0 28 (7.24%) 0 0

BayesC (� = 0) vs. BayesB (
~
�) 46 (11.89%) 0 0 66 (17.05%) 0 0

BayesC (� = 0) vs. Animal model 140 (36.18%) 40 (10.34%) 4 (1.03%) 136 (35.14%) 22 (5.68%) 2 (0.52%)

BayesC (
~
�) vs. BayesB (

~
�) 36 (9.30%) 0 0 44 (11.37%) 0 0

BayesC (
~
�) vs. Animal model 141 (36.43%) 36 (9.30%) 5 (1.29%) 141 (36.43%) 22 (5.68%) 3 (0.78%)

BayesB (
~
�) vs. Animal model 144 (37.21%) 38 (9.82%) 2 (0.52%) 139 (35.92%) 22 (5.68%) 3 (0.78%)

1The number of quartiles changed was calculated by first assigning an animal’s quartile for any given analysis, then finding the difference of each ani-

mal’s quartile between the two analyses compared. Percentage was calculated by dividing the number of individuals within that category by the total

number of animals (n = 387).
2~
� = 0.995

3Family structure fixed effect refers to type of cross (an effect based upon the combination of sire and dam breeds, n = 12) for Warner-Bratzler shear force.

Table 3 - Comparison of the number and percentage of individuals with estimated breeding values for overall temperament at weaning that changed n

quartiles between any two analyses.

Number of individuals that changed n quartiles1

With family structure fixed effect3 Without family structure fixed effect3

Models compared2 1 2 3 1 2 3

BayesC (� = 0) vs. BayesC (
~
�) 174 (22.63%) 1 (0.13%) 0 88 (11.44%) 0 0

BayesC (� = 0) vs. BayesB (
~
�) 218 (28.35%) 4 (0.52%) 0 108 (14.04%) 0 0

BayesC (� = 0) vs. Animal model 309 (40.18%) 83 (10.79%) 7 (0.91%) 220 (28.61%) 7 (0.91%) 0

BayesC (
~
�) vs. BayesB (

~
�) 56 (7.28%) 0 0 30 (3.90%) 0 0

BayesC (
~
�) vs. Animal model 309 (40.18%) 78 (10.14%) 7 (0.91%) 232 (30.17%) 10 (1.30%) 0

BayesB (
~
�) vs. Animal model 317 (41.22%) 68 (8.84%) 9 (1.17%) 240 (31.21%) 12 (1.56%) 0

1The number of quartiles changed was calculated by first assigning an animal’s quartile for any given analysis then finding the difference of each animal’s

quartile between the two analyses compared. Percentage was calculated by dividing the number of individuals within that category by the total number of

animals (n = 769).
2~
� = 0.997

3Family structure fixed effect refers to family nested within sire for overall temperament at weaning.



be equivalent to �
�g

2 ) to the additive genetic variance calcu-

lated through the analysis (�
�g

2 ). When family structure

fixed effects were included in Bayesian analyses, the ratio

of �
EBV

2 to �
�g

2 ranged from 0.246 to 0.289, which was much

lower than when excluded (0.544 to 0.561 for Bayesian

models and 0.479 for the animal model) of TEMP. This dif-

ference was not observed for WBSF, most likely due to

sample size.

Furthermore, the estimate (either the posterior mean

or variance component) of additive genetic variance (�
�g

2 )

was always lower than what was expected (�g

2 ). Ultimately,

the differences found between the three variance parame-

ters of �
EBV

2 , �
�g

2 , �g

2 and provide an assessment of the esti-

mation procedure, as �g

2 is the value �
EBV

2 and �
�g

2 are

expected to be. This is not surprising or novel, as these

models do not take into account interactions between or

within causative loci for a given trait, thereby creating

missing variance (e.g., see Zuk et al. (2012) discussion on

phantom heritability). Differences may have been strongly

influenced by sample size available for this study. The re-

sults from this study show, however, that the variance esti-

mated from the analysis (�
�g

2 ) compared to the expected

variance (�g

2 ) are relatively similar, the difference is consis-

tent across the models within a trait, and the use of family

structure fixed effects in the model should not be included

for prediction of genetic merit.
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