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Abstract

Classical and progeroid congenital lipodystrophies are a collection of rare diseases displaying a large genetic 
heterogeneity. They occur due to pathogenic variants in genes associated with adipogenesis, DNA repair pathways, and 
genome stability. Subjects with lipodystrophy exhibit an impairment in the homeostasis of subcutaneous white adipose 
tissue (sWAT), resulting in low leptin and adiponectin levels, insulin resistance (IR), diabetes, dyslipidemia, ectopic 
fat deposition, inflammation, mitochondrial and endoplasmic reticulum commitments, among others. However, how 
pathogenic variants in adipogenesis-related genes modulate DNA repair in some classical congenital lipodystrophies 
has not been elucidated. In the same way, no data is clarifying how pathogenic variants in DNA repair genes result in 
sWAT loss in different types of progeroid lipodystrophies. This review will concentrate on the main molecular findings 
to understand the link between DNA damage/repair and adipogenesis in human and animal models of congenital 
lipodystrophies. We will focus on classical and progeroid congenital lipodystrophies directly or indirectly related to 
DNA repair pathways, highlighting the role of DNA repair-related proteins in maintaining sWAT homeostasis.
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Introduction
Nuclear and mitochondrial DNA are continuously exposed 

to damage induced by endogenous and exogenous sources 
(Evans et al., 2004; Bauer et al., 2015). Endogenous sources of 
DNA damage include reactive oxygen species (ROS) generated 
during normal cell metabolism, mainly by the mitochondria 
(Balaban et al., 2005), but also by the endoplasmic reticulum 
(ER), peroxisomes, and cell membrane (Bhattacharyya et 
al., 2014). Furthermore, exogenous DNA damage sources 
mainly include ultraviolet (UV) radiation, ionizing radiation 
(IRa), and alkylating agents (Evans et al., 2004). 

Cells have developed several DNA repair pathways to 
defend the genome against different types of damage, including 
the most deleterious lesions, such as oxidized DNA lesions, 
single strand breaks (SSBs), and double-strand breaks (DSBs) 
(Limpose et al., 2017). DNA repair pathways protect from 
frequent lesions resulting in DNA breaks. Oxidized DNA 
lesions and SSBs are usually repaired by the base excision 

repair (BER); DSBs are repaired by homologous recombination 
(HR) and non-homologous end joining (NHEJ). Although 
nucleotide excision repair (NER) is mainly responsible for 
repairing bulky DNA-distorting lesions induced by UV 
radiation, this pathway is also involved with the repair of 
oxidized DNA lesions together with BER (Dianov et al., 1999; 
Stevnsner et al., 2002; Tuo et al., 2002; D’Errico et al., 2006; 
Stevnsner et al., 2008; de Melo et al., 2016; Kumar et al., 
2020). There are two NER sub-pathways, global genomic-
NER (GG-NER) and transcription-coupled NER (TC-NER), 
which differ only in the initial step of DNA lesion recognition. 

Failure to repair DNA damage or misrepaired DNA 
lesions leads to genomic instability and changes in cellular 
homeostasis, resulting in cancer (Menck and Munford, 2014; 
Jeggo et al., 2016), neurodegenerative diseases (Weissman et 
al., 2007; Krasikova et al., 2021), aging (Schumacher et al., 
2021), and progeroid diseases with loss of subcutaneous white 
adipose tissue (sWAT) (López-Otín et al., 2013; Araújo-Vilar 
and Santini, 2019; Araújo de Melo Campos et al., 2021). For 
example, in the progeroid Cockayne Syndrome (CS), defects in 
NER may lead to premature aging with loss of sWAT (László 
and Simon, 1986; Nance and Berry, 1992; Kamenisch et al., 
2010). Aging is a process that disturbs most living cells and is 
related to the accretion of damage to the molecules, genomic 
instability, telomere dysfunction, heterochromatin loss, and 
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loss of sWAT. Other hallmarks of aging include mitochondrial 
dysfunction, senescence, inflammation, deregulated nutrient 
sensing, and metabolic defects. Altogether, these changes lead 
to a failure in stem cell function, reducing their capabilities 
to regenerate tissue (Schosserer et al., 2018; Palmer et al., 
2019; Smith et al., 2021). 

Over the past decade, a renewed interest in adipose tissue 
functions and genomic integrity has emerged. Accumulation 
of senescent white adipocytes occurs during aging, which is 
associated with hypertrophy of adipocytes, dyslipidemia, and 
IR (Unger, 2005; Smith et al., 2021; Von Bank et al., 2021). 
Extreme decrease of sWAT and senescence of adipocytes are 
hallmarks of an advanced age (Tchkonia et al., 2010; Liu et 
al., 2018). During aging, the reduced capacity of sWAT to 
store lipids may contribute to metabolic complications due to 
ectopic deposition of lipids (lipotoxicity) (Von Bank, et al., 
2021). The mechanisms involved in adipose tissue aging were 
recently reviewed (Ou et al., 2022). The main hallmarks of 
senescent cells are a secretory phenotype, cell cycle arrest, 
and activation of a DNA damage response (DDR), with 
phosphorylated histone H2AX (γ-H2AX) and p53 expression 
as markers of senescent cells (Tchkonia et al., 2010; Liu et 
al., 2018). Further, a lower expression of the H2AX gene was 
found in sWAT of obese individuals (Rohde et al., 2020). 
However, the link between senescence, DNA damage, and loss 
of sWAT in congenital lipodystrophies is poorly understood.

This review discusses recent molecular findings in the 
study of congenital lipodystrophies and the role of DNA repair 
in maintaining adipose tissue’s functions. We focused on human 
and animal models of congenital lipodystrophies to unravel 
the link between DNA damage/repair and sWAT homeostasis.

sWAT physiology and aging

White adipose tissue (WAT) has been extensively studied 
due to the association between increased visceral WAT (vWAT) 
and metabolic and cardiovascular disturbs (Tchkonia et al., 
2010; Item and Konrad, 2012). On the contrary, studies 
concerning sWAT and brown adipose tissue (BAT) have shown 
their beneficial effects in improving metabolism and insulin 
sensitivity. These findings highlight that distinct WAT depots 
have different roles related to metabolic health. While vWAT is 
found around visceral organs, such as gonadal, retroperitoneal, 
perirenal, omental, and mesenteric localization, depots of 
sWAT have restricted localization and functions, being found 
mainly under the skin (metabolically active sWAT) and in 
palms and soles (mechanic sWAT) (Wajchenberg, 2000; Choe 
et al., 2016; Schosserer et al., 2018). 

The primary interest of studies concerning WAT 
physiology was mainly directed to its role as an energy 
storage tissue. However, over the last years, WAT research 
has gained a lot of attention since WAT has an essential 
hormonal function and undergoes significant changes during 
aging (Ou et al., 2022). One of the proposed aging hallmarks 
is dysfunctional adipose tissue and the consequent metabolic 
defects, including a reduction in the levels of somatotrophic 
axis hormones, such as insulin-like growth factor 1 (IGF1) and 
growth hormone (GH), as well as steroid hormones (Carrero 
et al., 2016). Indeed, changes in redox homeostasis have 
been found in metabolic syndrome, obesity, type 2 diabetes 

mellitus (DM), and lipodystrophies. During aging, WAT suffers 
redistribution, BAT depots decrease, and adipose progenitor 
and stem cells (APSCs) decline. Further, dysfunctional smaller 
cells similar to adipocytes increase in aged WAT, which show 
reduced insulin sensitivity than fully differentiated adipocytes 
(Kirkland et al., 2002). Altogether, these age-related changes in 
adipose tissue result in decreased sWAT and increased vWAT 
depots, compromising body function. The pathophysiology of 
adipose tissue in lipodystrophies was remarkably discussed 
in recent reviews (Zammouri et al., 2021; Lim et al., 2021; 
Le Lay et al., 2022).

Classical and progeroid congenital lipodystrophies 

Genetic lipodystrophies are a group of rare, heterogeneous 
metabolic diseases caused by a lack of sWAT, which can be 
total or partial (Garg, 2011; Brown et al., 2016; Zammouri 
et al., 2021; Araújo de Melo Campos et al., 2021). As in 
aging, congenital lipodystrophies have been associated with 
adipose tissue redistribution, sWAT loss, increased vWAT, and 
ectopic fat deposition (Garg and Agarwal, 2009; Zammouri 
et al., 2021). The nearly complete lack of body fat at birth 
results in Congenital Generalized Lipodystrophy (CGL), the 
most severe form of lipodystrophy. Instead, Familial Partial 
Lipodystrophy (FPLD) is characterized by a deficiency of 
sWAT in the limbs and gluteus that emerges during childhood 
or puberty, associated with fatty tissue deposition in specific 
body regions, such as the face, neck, and intra-abdominal 
area. Progeroid syndromes are also a group of rare congenital 
diseases characterized by clinical features including aging, 
hair loss, cardiovascular commitments, comorbidities affecting 
the skeleton and muscle, lipodystrophy, metabolic changes, 
and others (Van Der Pluijm et al., 2007; Turaga et al., 2009; 
Carrero et al., 2016). Since generalized or partial lipodystrophy 
is an important clinical finding associated with numerous 
progeroid diseases, treatment strategies have been developed 
to fight metabolic and mitochondrial commitments found in 
these syndromes (Carrero et al., 2016; Zammouri et al., 2021). 
In this review, we will focus only on classical and progeroid 
lipodystrophies associated with senescence, DNA damage 
accumulation, and metabolic dysfunction, three hallmarks 
of aging (López-Otín et al., 2013). Table 1 shows the main 
classical and progeroid congenital syndromes.

Congenital generalized lipodystrophies – CGLs

The lack of sWAT in CGL causes a decrease in leptin 
levels and alters food intake, intensifying the appetite 
(Badman & Flier, 2007; Rodríguez et al., 2016). The blood 
circulating lipids result in hypertriglyceridemia (HTG), and 
their accumulation in ectopic sites, such as in the liver and 
skeletal muscle, can result in hepatic steatosis and weakness 
of respiratory muscle strength, respectively (Debray et al., 
2013; Dantas De Medeiros et al., 2018; Araújo de Melo 
Campos et al., 2021). Severe IR causes hypertension, HTG, 
and difficulty in controlling diabetes. Liver fat deposition 
can result in cirrhosis. These comorbidities could explain the 
severity of CGL and its early mortality (Lima et al., 2018b). 

The most common pathogenic variants associated with 
CGLs are in AGPAT2 and BSCL2 genes, related to types 1 
and 2 (CGL1 and CGL2), respectively (Magré et al., 2001; 
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Agarwal et al., 2002; Craveiro Sarmento et al., 2019). Although 
CGL1 and CGL2 have similar metabolic abnormalities, the 
sWAT loss is less severe in CGL1 individuals, which have 
more mechanical sWAT, while CGL2 individuals display 
a significant reduction of both metabolically active and 
mechanic sWAT (Garg et al., 1992; Agarwal et al., 2003b; 
Simha and Garg, 2003). Regarding the AGPAT2 gene, it 
codifies to the 1-acylglycerol-3-phosphate o-acyltransferase 
(1-AGPAT 2) enzyme, which is associated with the synthesis 
of triacylglycerol (TG) and phospholipids in the ER (Agarwal 
and Garg, 2003). Recessive pathogenic variants in the BSCL2 
gene, which codifies to the ER membrane-localized seipin, 
are the genetic cause of CGL2 (Magré et al., 2001). This 
protein acts to regulate the TG transport from the ER to 
lipid droplets (LDs) (Salo et al., 2019), converting nascent 
to mature LDs (Wang et al., 2016) and regulating ER-LDs 
contacts and cargo delivery (Salo et al., 2016). Seipin has 
essential functions related to adipose tissue homeostasis, such 
as coordinating 1-AGPAT2 function (Sim et al., 2020) and 
controlling Ca2+ (calcium) import and adipocyte metabolism 
at ER-mitochondria sites (Combot et al., 2022). 

Type 3 CGL (CGL3) occurs due to homozygous 
pathogenic variants in the CAV1 gene that codifies to caveolin-1 
(Kim et al., 2008), whereas type 4 CGL (CGL4) occurs due 
to pathogenic variants in the CAVIN1 gene, which codifies to 
the cavin-1 protein (Hayashi et al., 2009; Rajab et al., 2010). 
Both cavin-1 and caveolin-1 are present in caveolae, which are 
cave-like structures located at the plasma membrane in most 
cells, mainly adipocytes. Caveolae are involved in cellular 
processes, such as cell metabolism, cholesterol homeostasis, 
cell proliferation, and senescence (Parton, 2018). However, the 
number of pathogenic variants in both genes is scarce relative 
to CGL1 and CGL2. Table 1 contains a summary of the the 
molecular basis and sWAT physiology of CGL syndromes.

At the morphological level, CGL subjects present a 
typical phenotype, revealing acromegalic facies, prominent 
musculature, prognathism, phlebomegaly (prominent veins), 
umbilical protrusion, acanthosis nigricans, acrochordons, 
hirsutism, bone cysts, and others (Garg, 2000; Maldergem 
et al., 2002; Agarwal et al., 2003b; Garg and Agarwal, 2009; 
Vigouroux et al., 2011; Lima et al., 2016; Lima et al., 2017; 
Lima et al., 2018a). At metabolic and physiological levels, 
CGL subjects present dyslipidemia, hyperinsulinemia, IR, DM, 
low levels of leptin and adiponectin, decreased levels of high-
density lipoprotein cholesterol (HDL-c), hepatosplenomegaly, 
and hypertrophic cardiomyopathy (Faria et al., 2009; Lima 
et al., 2016; de Azevedo Medeiros et al., 2017; Ponte et al., 
2018; Dantas De Medeiros et al., 2018). 

Familiar partial lipodystrophies – FPLDs

Concerning the FPLDs, eight subtypes were described, 
and the primary molecular causes of these heterogeneous 
diseases are genes related to the nuclear envelope and 
adipocyte homeostasis, such as LMNA and PPARγ (Patni and 
Garg, 2015; Araújo-Vilar and Santini, 2019; Fernández-Pombo 
et al., 2021). Type 1 FPLD (FPLD1, also named Köbberling 
syndrome) is probably a multigenic form of lipodystrophy 
(Patni and Garg, 2015; Araújo-Vilar and Santini, 2019). 
The most frequent FPLD is the Dunnigan syndrome, also 
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referred to as type 2 FPLD (FPLD2), which occurs due to 
pathogenic variants in the LMNA gene. This gene encodes 
lamin-A and lamin-C (besides lamins CΔ10 and C2) which 
play a significant function in maintaining the stability of the 
cellular nucleus by physically supporting nuclear envelope 
components (Gonzalo et al., 2017). Over 400 pathogenic 
variants were described in the LMNA gene. In addition to 
FPLD2, they are related to more than a dozen degenerative 
diseases, such as neuropathies, muscular dystrophies, and 
premature aging (Broers et al., 2006; Bertrand et al., 2011; 
Gonzalo and Kreienkamp, 2015). Recent reviews discussed 
the association between LMNA variants and several diseases 
(Ho and Hegele, 2019; Lazarte and Hegele 2021). However, 
how different LMNA pathogenic variants result in a plethora 
of diseases has yet to be unraveled. 

FPLD2 phenotype was initially described in 1974 by 
Dunnigan and first associated with the LMNA gene in 1998 by 
Peters et al. (Dunnigan et al., 1974; Peters et al., 1998). This 
disease is characterized by loss of sWAT in the extremities 
and trunk, sparing the face and neck at puberty. Lamins 
A/C, encoded by the LMNA gene, are nuclear proteins, and 
specific pathogenic variants may lead to nuclear function 
disruption, resulting in premature adipocyte death (Garg, 
2011). FPLD2 subjects show loss of sWAT mainly in the 
axial skeleton, such as in limbs, trunk, hips, and gluteus, but 
not in the appendicular skeleton (Garg et al., 2001; Chan et 
al., 2016). FPLD2 metabolic disturbances include HTG, low 
HDL-c levels, IR, hepatic steatosis, pancreatitis, and a high 
probability of developing cardiovascular diseases (Araújo-
Vilar and Santini, 2019; Lazarte et al., 2021). 

Type 3 (FPLD3) is caused by pathogenic variants in the 
PPARγ gene. In 1999, three subjects were reported with severe 
IR harboring two different heterozygous pathogenic variants 
in the ligand-binding domain of peroxisome proliferator-
activated receptor type γ (PPARγ) (Barroso et al., 1999). 
Later, these variants were associated with FPLD3 (Savage 
et al., 2003). As PPARγ is a critical transcription factor 
for adipogenesis, its dominant pathogenic variants may 
impair adipocyte differentiation (Garg, 2011). This type is 
characterized by loss of sWAT in the extremities, especially 
in distal regions (Araújo-Vilar and Santini 2019).

Type 4 FPLD (FPLD4) was described and associated 
with two distinct heterozygous frameshift pathogenic variants 
in the PLIN1 gene (Gandotra et al., 2011). The PLIN1 gene 
encodes perilipin-1, an integral component of LDs, playing 
an essential role in lipid storage and hormone-regulated 
lipolysis (Garg, 2011). In this type, lipoatrophy is mainly 
evident in the gluteal regions and lower limbs, although the 
loss of subcutaneous fat has also been observed in the trunk 
and upper limbs. 

Type 5 FPLD (FPLD5) is caused by a homozygous 
truncating pathogenic variant in the CIDEC gene that was first 
reported in 2009 (Rubio-Cabezas et al., 2009). The clinical 
hallmarks are loss of sWAT in the lower limbs, prominent 
muscle mass, IR, diabetes, and decreased LD size in adipocytes. 
The CIDEC gene encodes the Cell Death Inducing DFFA 
Like Effector C (CIDEC) protein that is associated with LDs, 
inhibiting lipolysis and promoting the formation of unilocular 
LDs in adipocytes (Garg, 2011).

Type 6 FPLD (FPLD6) is triggered by a homozygous 
pathogenic variant in the LIPE gene. The first to describe 
this disease and its association with this gene were Albert et 
al. (2014). The main clinical manifestations of this disease 
are progressive loss of sWAT in the legs that correlate with 
abnormal fat distribution, including fat accumulation in the 
neck, face, axilla, shoulders, back, abdomen, and pubic region. 
Furthermore, in some cases, myopathy, diabetes, HTG, low 
HDL-c, and hepatic steatosis may be observed (Zolotov et 
al., 2017).

Pathogenic variants in the CAV1 gene, first related to 
CGL3, were also found in type 7 FPLD (FPLD7) individuals 
(Cao et al., 2008). However, heterozygous pathogenic variants 
in this gene are responsible for causing FPLD7 (Cao et al., 
2008). This disease is characterized by loss of sWAT in different 
regions of the body, accompanied by metabolic complications 
such as IR, lipid abnormalities, and in some cases, cataracts and 
muscle spasticity (Garg et al., 2015). More studies are required 
to unravel the role of distinct CAV1 pathogenic variants in 
different types of congenital lipodystrophies, such as CGL3, 
FPLD7, and the neonatal onset of generalized lipodystrophy 
(Cao et al., 2008; Schrauwen et al., 2015; Garg et al., 2015). 
Table 1 summarizes the molecular basis and sWAT physiology 
of FPLD syndromes.

Progeroid disorders

Monogenic, premature aging diseases are heterogeneous 
syndromes and present variable severity and overlapping 
phenotypes, making it difficult for the correct clinical diagnosis 
(Carrero et al., 2016). Molecular investigations are essential 
for deciphering the genetic causes of progeroid overlapping 
diseases. The hallmarks of progeroid syndromes include 
increased DNA damage accumulation, defective DNA repair, 
telomere dysfunction, aberrant nuclear architecture and 
chromatin structure, impaired cell cycle, senescence, disrupted 
epigenetics regulation, and lack of sWAT (Agarwal and Garg, 
2006; Carrero et al., 2016; Niedernhofer et al., 2018). 

Cockayne Syndrome
Cockayne Syndrome (CS) is a progressive rare autosomal 

recessive disorder, first described through the clinical study of 
two patients (Cockayne, 1936). This disease results in postnatal 
growth failure, and progressive neurologic dysfunction 
primarily due to demyelination, and photosensitivity (Nance 
and Berry, 1992). 

CS may manifest as delayed psychomotor development, 
behavioral and intellectual deterioration, microcephaly, 
increased or decreased muscle tone and reflexes, gait ataxia, 
tremor, incoordination, dysarthric speech, pigmentary 
degeneration of the retina, cataracts, optic atrophy or optic 
disk pallor, sensorineural hearing loss, dental complications, 
kidney complications, hyperinsulinemia or abnormal glucose 
tolerance, elevated serum cholesterol or lipoprotein levels, and 
very low levels of HDL-c (Nance and Berry, 1992).

The aged appearance may come from the expression 
of thin hair, diminished subcutaneous tissue, scaly skin, 
erythematous dermatitis on the dorsum of the hands and wrists, 
on the legs, and on the face and ears, worsened after exposure 
to the sun, small faces with sunken eyes and prominent superior 
maxillae (Cockayne, 1936).
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Xeroderma Pigmentosum
Xeroderma Pigmentosum (XP) was first documented 

in 1884 when three affected patients were clinically studied, 
presenting freckle-like pigment spots which appeared 
simultaneously upon the face, neck, back of forearms, hands, 
upper arms, and legs below the knees (Crocker, 1884). Later, 
other studies showed that such cutaneous symptoms had a 
median age of onset of between one and two years, and about 
forty-five percent of the patients had basal cell carcinoma 
or squamous cell carcinoma of the skin. Many of them also 
presented neurologic abnormalities, including progressive 
mental deterioration, hyporeflexia or areflexia, and progressive 
deafness, associated with dwarfism and immature sexual 
development (Cleaver, 1968; Kraemer et al., 1987). Next, 
James Cleaver discovered that fibroblasts obtained from XP 
patients displayed defective DNA repair after ultraviolet UV 
exposure (Cleaver, 1968). 

This condition has at least eight genetic groups, 
types A to G and a variant, which were identified through 
genetic complementation analysis (Tanaka, 1993). Cells 
from patients with the hereditary disease XP were expected 
to carry pathogenic variants in DNA repair genes. Their 
expression was either absent or much reduced compared to 
normal fibroblasts (Cleaver, 1968). This disorder presents 
over a 1,000-fold increased risk of skin cancer and a 10-fold 
increased risk of other tumors, along with progeroid symptoms. 
These symptoms were found in an XP patient, including an 
aged appearance, weight loss, epidermal atrophy, visual and 
hearing loss, ataxia, cerebral atrophy, hypertension, liver 
dysfunction, anemia, osteopenia, kyphosis, sarcopenia, and 
renal insufficiency (Niedernhofer et al., 2006).

Néstor-Guillermo Progeria Syndrome
Néstor-Guillermo Progeria Syndrome (NGPS) is a 

chronic progeroid disease characterized by aging phenotypes, 
including growth retardation, thin limbs, and loss of sWAT. 
NGPS is caused by a homozygous pathogenic variant in the 
BANF1 gene (c.34G>C; p.A12T), that encodes BANF1/
BAF1 (barrier-to-autointegration factor 1) (Puente et al., 
2011). Two unrelated Spanish families were clinically 
investigated by Puente et al. (2011). Both had the c.34G>A 
[p.Ala12Thr] pathogenic variant in the BANF1 gene. Skin 
fibroblasts from these patients exhibited deficient BANF1 
levels and profound nuclear abnormalities, including blebs 
and aberrations. Concurrently, transfected mutant fibroblasts 
with an expression vector encoding an EGFP-BAF fusion 
protein, and confocal microscopy analysis, revealed that 
ectopic expression of EGFP-BAF in these progeroid fibroblasts 
rescued the nuclear abnormalities, confirming the causal role of 
the BAF p.Ala12Thr pathogenic variant (Puente et al., 2011). 
Later in the same year, Cabanillas et al. (2011) published a 
detailed clinical report of the two affected patients from the 
two unrelated families previously described.

Affected patients showed partial phenocopy of Hutchinson 
Gilford Progeria Syndrome (HGPS) and Mandibuloacral 
dysplasia (MAD) but without cardiovascular alterations and 
metabolic abnormalities. They presented a collection of clinical 
outcomes that suggested a new progeroid syndrome. Such 
manifestations included: very severe osteolysis with intense 

bone resorption, a long lifespan relative to HGPS and MAD, 
presence of eyebrows and eyelashes, and persistence of scalp 
hair. They also observed a generalized loss of sWAT over 
the limbs and trophic facial subcutaneous fat pad, abdomen, 
neck, and head, and dry and atrophic skin with small light-
brown spots over the thorax, scalp, and limbs. Low levels of 
25-OH-vitamin D and leptin were also seen (Cabanillas et 
al., 2011; Puente et al., 2011).

Werner and Bloom Syndromes
Werner (WS) and Bloom (BS) syndromes are rare 

recessive autosomal diseases characterized by clinical 
features of premature aging that are caused by loss-of-
function pathogenic variants in the WRN (RECQL2) and 
BLM (RECQL3) genes, respectively (Ellis and German, 
1996; Yu et al., 1996; Hickson, 2003). WRN (WRN RecQ 
Like Helicase) and BLM (BLM RecQ Like Helicase) are 
ubiquitously expressed RECQ helicases that play major 
roles in a wide variety of DNA repair processes required for 
genomic integrity maintenance. WS was first described by Otto 
Werner in 1904, who presented the clinical WS phenotype as 
a “caricature of aging” (Werner 1985). WS patients exhibit 
metabolic complications including IR, DM, dyslipidemia, 
and fatty liver, as well as cataracts, cancer, and premature 
aging. Atherosclerosis is more frequent from the third decade 
onwards. At a molecular level, WS cells display a high rate 
of spontaneous mutations and karyotypic abnormalities, in 
addition to aberrant recombination, telomere defects, and 
hypersensitivity to DNA damage and/or cellular stress (Turaga 
et al., 2009).

WS patients develop normally until the second decade 
of life, and the first clinical sign is the lack of peak pubertal 
growth. Between 20 and 30 years of age, patients begin to 
suffer from skin atrophy, gray hair, and hair loss. Soft tissue 
calcification is a feature often associated with ulcerations 
around the ankles (and occasionally elbows) that eventually 
may require lower limb amputation (Takemoto et al., 2013). 
Other complications include type 2 DM, osteoporosis, bilateral 
ocular cataract, premature and severe forms of arteriosclerosis, 
peripheral neuropathy, and multiple cancers mainly perceived 
in middle age (Lauper et al., 2013). These patients generally 
present a median age of death around 54 years, typically due 
to cancer or myocardial infarction (Goto, 1997; Goto et al., 
2013; Martin et al., 2021). WRN protein has exonuclease 
and helicase activities that are important for genome integrity 
maintenance. This protein interacts physically and functionally 
with enzymes that play central roles in DNA replication and 
repair. It is remarkable that replication and recombination 
functions also appear to underlie the telomeres maintenance 
by RecQ helicases (Turaga et al., 2009).

BS, also referred to as congenital telangiectatic erythema, 
was first described in 1954 (Bloom, 1954). This progeroid 
syndrome is caused by pathogenic variants in the BLM 
gene that results in errors in the DNA replication process, 
and a pronounced number of chromosomal breaks and 
rearrangements, leading to the symptoms and clinical feature 
of BS (Bloom, 1954; Hickson, 2003). BS patients generally 
demonstrate postnatal growth retardation, facial butterfly 
rash, often after exposure to sunlight, defective cellular and 
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humoral immunity, and an increased risk of cancer, besides a 
high prevalence of DM, dyslipidemia, and hepatic steatosis. 
Both WS and BS syndromes show metabolically phenocopies 
of lipodystrophy (reduction in sWAT) and obesity (Epstein et 
al., 1966; Diaz et al., 2006; Goh et al., 2020).

Hutchinson Gilford Progeria Syndrome
HGPS is considered one of the most severe laminopathies, 

being included in the group of premature aging degenerative 
diseases. Patients live for an average of just 14.6 years, dying 
primarily due to myocardial infarction or strokes (Gordon 
et al., 2014). HGPS was first described in 1886 by the 
British physician Jonathan Hutchinson and, later, by Hastings 
Gilford in 1904 (Hutchinson, 1886; McKusick, 2005). The 
main clinical manifestations of HGPS patients are sWAT 
loss, alopecia, Ca2+ dysfunction, vascular stiffening, delayed 
dentition, heart infarction, and progressive arteriosclerosis 
(Goldman et al., 2004; Prokocimer et al., 2013). Molecularly, 
HGPS patient cells have nuclear shape abnormalities, telomere 
shortening, genomic instability, alterations in epigenetic 
regulation and gene expression, mitochondrial dysfunction, 
and premature senescence. 

HGPS occurs due to the heterozygous silent pathogenic 
variant c.G608G in the LMNA gene (Eriksson et al., 2003; 
De Sandre-Giovannoli et al., 2003). LMNA encodes the 
prelamin-A, which undergoes post-translational processing, 
leading to transient production of different intermediates, 
including farnesylated prelamin-A and carboxymethylated 
prelamin-A (Lattanzi et al., 2014). The zinc metalloproteinase 
STE24 homolog (ZMPSTE24) cleaves the prelamin-A in two 
independent steps: the first is the cleavage of the last three amino 
acids in the C-terminal region of farnesylated prelamin-A. This 
cleavage can also be performed by Ras converting CAAX 
endopeptidase 1 (RCE1). The second cleavage of farnesylated 
and carboxymethylated prelamin-A occurs at the leucine 647 
(L647) and results in the removal of the last fifteen amino 
acids, producing the mature, unfarnesylated lamin-A (Lattanzi 
et al., 2014). The pathogenic variant c.G608G in the LMNA 
gene leads to the loss of the recognition site for the second 
cleavage of the farnesylated prelamin-A by ZMPSTE24 
(Eriksson et al., 2003; De Sandre-Giovannoli et al., 2003). 
This change results in the accumulation of a permanently 
farnesylated and carboxymethylated dominant protein, referred 
to as progerin, disrupting the nuclear envelope (Broers et al., 
2006; Bertrand et al., 2011; Bidault et al., 2020; Saxena and 
Kumar, 2020). Furthermore, the accumulation of farnesylated 
prelamin-A is related to nuclear enlargement, heterochromatin 
loss, euchromatin dispersion, and increased ROS production 
(Richards et al., 2011).

Type A Mandibuloacral Dysplasia with Lipodystrophy
Type A Mandibuloacral Dysplasia with Lipodystrophy 

(MADA) is a rare autosomal recessive disease in which the 
patients commonly present slow and progressive osteolysis 
of the mandible, terminal phalanges, and clavicles, resulting 
in mandibular hypoplasia, dental crowding, and clavicular 
resorption, as well as skin abnormalities, acanthosis nigricans, 
and partial lipodystrophy. However, there is an absence 
of neurodegeneration. This condition is associated with 

accelerated aging and is usually identified after 4 or 5 years after 
birth (Novelli et al., 2002). MADA patients express a partial 
lipodystrophy pattern of body fat distribution with degeneration 
of sWAT in the torso and limbs and accumulation in the face, 
neck, and trunks (Novelli et al., 2002). This syndrome may 
be associated with clinical features of metabolic syndromes, 
including IR, which was evidenced in the clinical study of 
three patients with MAD (Freidenberg et al., 1992), impaired 
glucose tolerance, DM, and lack of breast development with 
regular or irregular menstrual periods in female patients (Cenni 
et al., 2018). This disorder is caused by the accumulation of 
prelamin-A in MADA cells, leading to the restraint of cellular 
differentiation due to the impaired import of transcription 
factors required for adipogenic gene activation or stress 
response (Cenni et al., 2018). 

MAD was first reported by Young et al. (1971). Since 
then, other authors studied different cases of MAD in patients, 
such as Zina et al. (1981), Pallotta and Morgese (1984), and 
Tenconi et al. (1986), although the cause was still unknown. 
The official association between MADA and the LMNA 
gene was published in 2002, through the clinical and genetic 
investigation of five consanguineous Italian families, whose 
skin fibroblasts showed abnormal lamin nuclei (Novelli et 
al., 2002).

Pathogenic variants in the LMNA gene, such as 
p.Arg471Cys, p.Arg527Cys, p.Arg527Leu, p.Arg527His, 
p.Ala529THR, p.Ala529Val, and p.Met540Ile (Marcelot 
et al., 2020), cause the accumulation of prelamin A (non 
farnesylated) to toxic levels, along with the mutated prelamin A 
(farnesylated), affecting the whole organization of the nuclear 
envelope. The most common pathogenic variant responsible 
for the MADA phenotype is the homozygous missense 
substitution of c.1580G > A mapping in the exon 9 of the 
LMNA gene, resulting in the p.Arg527His mutated protein. 
These variants in the LMNA gene cause loss of interaction 
between lamin-A and other proteins, impacting stress recovery 
mechanisms in MADA cells, which means that repeated stress 
stimuli and failure to properly manage this condition led to 
senescence. These cells show nuclear dysmorphism, loss of 
peripheral heterochromatin, and nuclear lamina thickening 
(Cenni et al., 2018).

Type B Mandibuloacral Dysplasia with Lipodystrophy
Type B Mandibuloacral Dysplasia with Lipodystrophy 

(MADB) is a rare autosomal recessive premature aging 
disease (Agarwal et al., 2003a). MADB is characterized 
by IR, metabolic comorbidities, atrophic skin, brittle hair, 
generalized loss of sWAT, skeletal abnormalities such as 
mandibular and clavicular hypoplasia, and acro-osteolysis of 
the distal phalanges (Hitzert et al., 2019). Although MADB 
and MADA have many similarities, MADB individuals 
develop early skeletal abnormalities (Agarwal et al., 2003a). 
ZMPSTE24 pathogenic variants are responsible for many 
different diseases, depending on the degree of prelamin-A 
processing impairment (Shackleton et al., 2005). MADB is 
caused by compound heterozygous or homozygous pathogenic 
variants in the ZMPSTE24 gene, resulting in reduced activity 
of the metalloprotease ZMPSTE24. Compound heterozygous 
variants in the ZMPSTE24 gene, such as p.Phe361fsX379/p.
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Trp340Arg (Agarwal et al., 2003a), p.Phe361fsX379/p.
Asn265Ser (Shackleton et al., 2005; Agarwal et al., 2006), 
p.Gln41X/p.Pro248Leu (Miyoshi et al., 2008), p.Tyr70fs/p.
Asn265Ser (Cunningham et al., 2010), and p.Pro248Leu/p.
Trp450X (Ahmad et al., 2010), as well as the homozygous 
variants p.Leu94Pro (Yaou et al., 2011) and p.Tyr399Cys (Haye 
et al., 2016), can partially or totally affect the functions of the 
metalloprotease ZMPSTE24, resulting in the accumulation 
of farnesylated prelamin-A and progressive loss of sWAT. 
Zmpste24-/- mice also displayed almost completed loss of sWAT 
due to the toxic accumulation of farnesylated prelamin-A 
(Bergo et al., 2002; Pendás et al., 2002).

Wiedemann-Rautenstrauch Syndrome
The POLR3A gene encodes the largest subunit of RNA 

polymerase III (Pol III), forming the catalytic core with 
POLR3B. Pol III is responsible for the transcription of 
different kinds of non-protein-coding RNAs, which regulate 
transcription, RNA processing, and translation (Sepehri and 
Hernandez 1997; Werner et al., 2009; Wu et al., 2021). This 
protein also acts in the proper function of the nucleolus, 
including ribosome assembly by enhancing 5S rRNA synthesis 
and protein translation, determining the metabolic state of 
the cell (Tiku and Antebi 2018; Báez-Becerra et al., 2020).

Wiedemann-Rautenstrauch Syndrome (WRS) was first 
studied in 1977 (Rautenstrauch et al., 1977) and in 1979 
(Wiedemann, 1979), both studies through clinical reports of 
patients with a progeroid syndrome, utilizing their lymphocytes 
and cultured skin fibroblasts. The relation between WRS and 
pathogenic variants in the POLR3A gene was confirmed by 
investigating DNA and RNA samples and fibroblast cultures 
of two affected Bulgarian families (Azmanov et al., 2016), 
showing that the POLR3A gene is the primary locus for the 
WRS phenotype. Since then, studies have presented POLR3A 
biallelic variants that alter splicing and/or truncate translation 
and are associated with WRS, such as c.1909þ18G>A and 
c.2617C>T (Jay et al., 2016), c.3337-5T>A, c.3337-11T>C, 
c.490+1G>A, c.2005C>T, c.760C>T, c.1572+1G>A, c.2617-
1G>A, c.3G>T and c.*18C>T (Wambach et al., 2018), all 
found in clinical and genetic analysis of WRS patients. 
Accordingly, these POLR3A alterations are the cause of the 
WRS progeroid disease.

WRS is sporadic and heterogeneous, characterized by 
intrauterine growth restriction (IUGR), poor postnatal weight 
gain, characteristic facial features, pseudohydrocephalus, 
generalized lipodystrophy, with an almost complete lack 
of subcutaneous fat and possible paradoxical caudal fat 
accumulation, premature alopecia, neonatal teeth, and teeth 
abnormalities (Rautenstrauch et al., 1977; Wiedemann, 1979). 
The progressive generalized lipodystrophy manifests with 
local fatty tissue accumulations, and cachectic appearance 
(Paolacci et al., 2017; Lessel and Kubisch, 2019).

Ruijs-Aalfs Syndrome
The SPRTN gene encodes to Spartan protein, a DNA-

dependent metalloprotease associated with the replication 
machinery that repairs DNA-protein crosslinks (DPCs) 
through the SprT protease domain (Maskey et al., 2014, 2017). 
DPCs derive from proteins covalently and irreversibly bound 

to DNA, such as Topoisomerase 1 (Top1), and the SPRTN 
(SprT-Like N-Terminal Domain) proteolytic activity, which 
upon DNA and ubiquitin-binding and promotes cleavage of 
DPC substrates and itself (Lopez-Mosqueda et al., 2016; 
Li et al., 2019). Spartan malfunction, as a consequence 
of pathogenic variants such as c.721delA and c.350A>G 
(Lessel et al., 2014), is responsible for replication stress, 
which has been suggested to cause DSBs, translocation 
mosaicism, and genomic instability. Thus, pathogenic variants 
in the SPRTN gene have been linked to cancer and aging, 
more specifically to the Ruijs-Aalfs syndrome (RJALS), an 
autosomal recessive disorder firstly described by Ruijs et al. 
(2003). RJALS individuals display genome instability, short 
stature, cataract, progeria, low body weight, micrognathia, 
triangular face, muscular atrophy, lipodystrophy, and early-
onset hepatocellular carcinoma (Ruijs et al., 2003; Lessel 
et al., 2014). 

The first association between SPRTN pathogenic 
variants, progeroid syndromes, and liver tumors was made 
in 2014, using Sprtn hypomorphic mice (Maskey et al., 2014) 
and in primary skin fibroblasts, liver tumor biopsies, and 
lymphoblastoid cells (LCLs) from three progeroid patients, 
as well as in U2OS, and HEK293T cell lines (Lessel et al., 
2014). The pathogenic variants in the SPRTN gene, such as 
SPRTN-∆C and SPRTN-Y117C, and defects in DPC repair 
were shown in 2016 (Lopez-Mosqueda et al., 2016; Stingele 
et al., 2016; Vaz et al., 2016).

Genes related to DNA repair and  
genomic stability resulting in progeroid  
diseases with lipodystrophy

In the last years, a plethora of molecular findings 
unraveling the link between DNA damage/repair and 
adipogenesis in human and animal models has emerged. In 
this section, we will highlight the main findings concerning the 
role of genes related to DNA repair and genomic stability in 
progeroid syndromes with lipodystrophy. Table 2 summarizes 
the main findings of this section.

The LMNA gene and FPLD2

The link between changes in redox homeostasis, cell cycle, 
and senescence was investigated in fibroblasts from FPLD2 
subjects carrying the pathogenic variants p.D47Y, p.L92F, 
p.L387V, p.R399H, p.L421P, and p.R482W in the LMNA 
genes (Caron et al., 2007). These pathogenic variants result in 
prelamin-A accumulation, the precursor of lamin-A, which was 
associated with the occurrence of mitochondrial dysfunction 
and higher levels of cytoplasmic ROS. Disturbances in the 
cell cycle and premature senescence were also found (Caron 
et al., 2007). Oxidative stress, inflammation, senescence, and 
calcification were also found in vascular smooth muscle cells 
(VSMCs) from FPLD2 subjects harboring R482W, D47Y, and 
R133L LMNA pathogenic variants (Afonso et al., 2016). This 
study only investigated DSBs accumulation by evaluating 
the amount of γH2AX foci. Unrepaired DSBs accumulation 
was also verified in human coronary artery endothelial cells 
(HCAECs) transduced with adenoviral vectors containing 
Flag-tagged p.R482W prelamin-A cDNA It was also verified 
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that pravastatin treatment decreased the levels of γH2AX foci 
(Bidault et al., 2013).

Further, prelamin-A accumulation was directly 
associated with accumulation of DSBs in VSMCs infected with 
prelamin-A adenovirus (Liu et al., 2013). The group performed 
microarray assays and found that DNA repair pathways 
responsible for the removal of DSBs were downregulated, 
suggesting that prelamin-A accumulation amplifies the DDR 
against DSBs. They also verified that the miRNA-141-3p 
levels were increased. This microRNA negatively regulates 
the ZMPSTE24, a prelamin-A maturation enzyme, which was 
considered a significant regulator of dysfunctional VSMCs 
from FPLD2 subjects. Although DNA repair pathways 
were not assessed in detail in this work, it is reasonable to 
suggest that the disrupted redox homeostasis found in those 
subjects could induce oxidized DNA damage and contribute 
to the pathophysiology of FPLD2. Indeed, Maynard and 
co-workers investigated the mechanism by which Lmna 
regulates the repair of oxidized DNA damage by the BER 
pathway in a mice model. They performed microarray gene 
expression and found that Lmna-/- MEFs (mouse embryonic 
fibroblasts) displayed an upregulation of genes related to 
the BER pathway and mitochondrial genome maintenance 
(Maynard et al., 2019). On the contrary, genes involved with 
metabolic processes and oxidative stress response mediated 
by NFE2L2 (nuclear factor erythroid 2-like 2; also termed 
NRF2) were downregulated. However, the authors did not 
explore the downregulated genes related to the metabolic 
process. Furthermore, they found that Lmna-/- MEFs were 
sensitive to DNA damage induced by hydrogen peroxide 
(H2O2) and menadione compared to Lmna+/+ MEFs. Besides, 
the levels of 7,8-dihydro-8-oxoguanine (8-oxoG), the most 
abundant oxidized DNA level mainly repaired by the 8-oxoG 
DNA glycosylase (OGG1) from BER (Cadet et al., 2003; 
Krokan and Bjørås, 2013), were higher in Lmna-/- MEFs 
relative to Lmna+/+ MEFs after H2O2-induced DNA damage. 
These data indicate that this lesion is less efficiently repaired 
in the absence of Lmna, corroborating with results obtained 
by Comet assay, which revealed the repair efficiency of 
oxidized DNA lesions, including 8-oxodG and FapyG, was 
decreased in Lmna-/- MEFs relative to Lmna+/+ MEFs. After 
H2O2-induced DNA damage, Lmna-/- MEFs also showed 
lower levels of Parp-1, Lig3, and Polβ mRNA expression 
as well as lower protein levels of PARP-1, LIG3, and Polβ. 
Interestingly, Lmna is required to APE1 and Polβ activities, 
which were PARP-1 dependent. Lmna depletion by siRNA 
also led to impaired BER in U2OS cells. Taken together, 
although these findings are very relevant to unravel the 
role of LMNA in the repair of oxidized DNA lesions, a link 
between BER and LMNA in the context of adipose tissue 
was not provided. 

The LMNA gene and HGPS

Recent evidence revealed that accumulation of progerin 
causes defects in the expression and recruitment of DNA repair 
components, in addition to the suppression of Poly-ADP-
ribose polymerase 1 (PARP-1) (Liu et al., 2011; Zhang et 
al., 2014). Zhang and co-workers found PARP-1 suppression 
in smooth muscle cells (SMCs) obtained from HGPS at 
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protein levels and by immunofluorescence. This result was 
confirmed in HGPS fibroblasts carrying the pathogenic variant 
c.1824 C>T (p.G608G). Co-expression of PARP-1/GFP in 
SMCs revealed that progerin induces a mislocalization of a 
PARP-1 fraction to the cytosol (Zhang et al., 2014). PARP-1 
usually plays a role in suppressing the NHEJ DNA repair 
mechanism and protecting HR (Broers et al., 2006; Bertrand 
et al., 2011; Patel et al., 2011; Zhang et al., 2014). Besides, 
most SMCs from HGPS individuals activated the error-prone 
NHEJ repair during S-phase, while HR was deficient during 
S-phase, leading to mitotic disaster and cell death (Zhang 
et al., 2014). These data indicate the role of progerin in 
regulating PARP-1 expression and NHEJ activity in SMCs 
from HGPS individuals.

The DDR to DSBs begins with the activation of 
ATM (Ataxia-Telangiectasia mutated) and ATR (ATM-and 
Rad3-related), which play central roles in DNA repair 
checkpoints. ATR is activated by broad DNA damage, 
whereas ATM is activated by DSBs. Activated ATM and 
ATR phosphorylate Chk-1 (Checkpoint kinase 1) and Chk-2 
(Checkpoint kinase 2), initiating the signaling cascade that 
leads to p53 phosphorylation (Sancar et al., 2004; Li and 
Zou, 2005). Liu et al compared aged HGPS fibroblasts 
harboring the pathogenic variant c.1824 C>T and normal 
BJ fibroblasts to determine whether DNA damage pathway 
checkpoints were persistently activated. In this study, it was 
observed that progeroid cells showed more frequent DSBs, 
and persistent activation of ATM and ATR checkpoints, 
which led to higher levels of phosphorylated Chk-1 and 
Chk-2 and, consequently, higher levels of phosphorylated 
p53 (Liu et al., 2006). 

Another study observed that although some DNA repair 
proteins, such as ATM, ATR, Chk1, Chk2, and p53 were 
activated, Rad50 and Rad51 were not recruited to the DNA 
damage regions (Liu et al., 2008). Furthermore, surprisingly, 
XPA (Xeroderma pigmentosum complementation group A), a 
NER protein, was present in chromatin regions where DSBs 
had occurred in progeroid cells (Liu et al., 2008). The same 
was not observed in normal BJ fibroblasts, even when DSBs 
in DNA was induced by camptothecin (CPT). These findings 
suggest that the binding of XPA in DSBs regions prevents 
the recruitment of repair proteins such as Rad50 and Rad51 
(Liu et al., 2008). In this way of thinking, XPA depletion was 
performed to verify whether the recruitment of repair proteins 
was restored. Indeed, a partial restoration of proteins such as 
Rad50, Rad51, and Ku70 was observed (Liu et al., 2008). 

Mitochondrial dysfunction and increased levels of ROS 
were also found in HGPS fibroblasts (Richards et al., 2011). 
Accumulation of misrepaired DSBs and increased sensitivity 
to DNA damage agents, such as H2O2, were observed in 
HGPS fibroblasts. The treatment with N-acetyl cysteine 
(NAC), a ROS scavenger, decreased DSBs and improved 
cell growth (Richards et al., 2011). Besides, Kubben and 
co-workers found that although NFE2L2 (NRF2) protein 
levels did not change in HGPS fibroblasts, progerin sequesters 
NFE2L2 (NRF2), reducing its transcriptional activity since 
the sequestered NRF2 is mislocated to the nuclear periphery 
(Kubben et al., 2016). 

The LMNA gene and MADA 

To investigate the role of the LMNA R527H pathogenic 
variant in the cell cycle control and DDR, Alessandra di Masi 
and co-workers analyzed the response of MADA fibroblasts to 
DNA damage induced by IRa (Di Masi et al., 2008). They found 
high levels of chromosome aberrations in G2-irradiated MADA 
fibroblasts, suggesting the occurrence of misrepaired DNA 
and that MADA cells are more sensitive to IRa than control 
fibroblasts. Basal levels of phosphorylated ATM (at S1981) 
were higher in MADA fibroblasts. Furthermore, increased 
phosphorylated ATM-S1981 foci were observed in almost 
70% of MADA fibroblasts after X-ray treatment, suggesting 
accumulated DNA damage. Besides, as phosphorylation of 
γ-H2AX occurs around DSBs, being considered a marker 
for DSBs, immunofluorescence staining with the γ-H2AX 
antibody was performed. MADA cells presented a higher 
level of γ-H2AX after IRa treatment relative to control cells 
(Di Masi et al., 2008). Furthermore, p53 basal levels were 
2-fold higher in MADA fibroblasts compared to control, 
suggesting that the prelamin-A accumulation in MADA cells 
can determine the persistence of misrepaired DNA damage. 

The ZMPSTE24 gene and MADB

The ZMPSTE24 gene contribution to genomic stability 
and aging was also studied in models of progeroid phenotypes. 
Using Zmpste24-/- MEFs, Liu and co-workers discovered 
that the deficiency in Zmpste24 resulted in cell cycle arrest 
and senescence. These cells also presented chromosomal 
instability and quickly accumulated DNA damage relative to 
controls (Liu et al., 2005). Zmpste24-/- MEFs had high 53BP1 
foci and increased protein levels of γH2AX, a marker of 
DSBs, and phosphorylated chk1 (p-chk1), involved with DNA 
damage checkpoint response. They also found similar results in 
fibroblasts obtained from HGPS individuals. Zmpste24-/- MEFs 
also were sensitive to DNA-damage agents, such as those 
inducing DSBs [mitomycin (MMC), methylmethanesulfonate 
(MMS), CPT, and etoposide] and UV. After γ-irradiation, the 
number of γH2AX/53BP1 co-localized foci were delayed 
in Zmpste24-/- MEFs, suggesting that 53BP1 recruitment is 
affected. Besides, six and twelve hours after γ-irradiation, most 
of the 53BP1 foci disappeared in WT MEFs and fibroblasts. 
On the contrary, γH2AX/53BP1 co-localization was kept in 
Zmpste24-/- MEFs and HGPS fibroblasts, suggesting misrepaired 
DSBs. Later, they investigated whether defective DNA repair is 
associated with ZMPSTE24 deficiency. Using comet assay, the 
authors showed that Zmpste24-/- MEFs and HGPS fibroblasts 
had higher tail moment relative to controls, indicating that loss 
of Zmpste24 and progerin compromised DNA repair. It was 
also suggested that DNA repair deficiency in Zmpste24-/- MEFs 
and HGPS fibroblasts may be due to decreased Rad51 foci 
formation. In another study, Varela and co-workers found that 
liver and heart from Zmpste24-/- mice displayed an upregulation 
of p53 target genes, such as Gadd45a, p21 (Cdkn1a), and Atf3, 
as well as increased levels of γ-H2AX in the liver. Zmpste24 
deficiency also resulted in a senescent phenotype (Varela 
et al., 2005). Taken together, the authors revealed that the 
accumulation of farnesylated prelamin-A due to Zmpste24 
deficiency results in DNA damage accumulation, and the 
Rad51 recruitment is defective after γ-irradiation. 
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The ERCC8 (CSA), ERCC6 (CSB), and  
XPA genes and CS

Progressive loss of sWAT was observed in a model 
of CS mice (Brace et al., 2013). CS is characterized by 
neurodegeneration, growth failure, and photosensitivity 
(Fousteri & Mullenders, 2008; Vessoni et al., 2020). Csa-/-/
Xpa-/- (CX) mice showed more severe NER progeria, including 
small size and progressive loss of sWAT but not BAT. These 
mice also presented low levels of plasm triglycerides (TGs) 
and glucose. Therefore, the CX mice were a good model for 
studying human progeria. Later, the same group revealed 
changes in adiposity and lipid and glucose homeostasis in 
the CX mice model under chronic DNA damage induction, 
including IRa, crosslinking agent mitomycin (MMC), 
and ultraviolet (UV) radiation (Brace et al., 2016). They 
investigated how DNA damage affects energy metabolism 
and found that CX mice had a loss of sWAT and perigonadal 
WAT, as well as a decline in mature adipocyte size without 
inflammatory signals (crown-like - CL structures). Fasted 
CX mice had low glucose, insulin, HOMA-IR (homeostasis 
model assessment-estimated insulin resistance), and TGs in 
plasma compared to control mice. Circulating leptin levels 
were also decreased (Brace et al., 2016).

Another study also investigated the mitochondrial fatty 
acid oxidation (FAO) rate in these CX mice models. They 
found increased oxygen consumption rate (OCR), reduced 
respiratory exchange ratio (RER), as well as an upregulation 
of FAO-related genes in muscle from fasted CX mice (Brace 
et al., 2016). They also verified the impact of DNA damage 
on FAO capacity. For this, they used mouse dermal fibroblasts 
(MDFs) isolated from tails of WT and CX mice, preadipocytes 
for CX mice, and human dermal fibroblasts (HDFs) from 
CSA and CSB patients. They confirmed an increase in FAO 
under UV-C treatment for the CX and CS models, as well 
as that MMC and IRa at high doses promoted a similar rise 
in FAO in CX MDFs, as they found for UV-C. These results 
suggested that increased FAO was a beneficial adaptive 
response to genotoxic stress induced by UV-C, MMC, and 
IRa and revealed a link between genotoxic stress and energy 
metabolism related to DNA damage. 

Furthermore, they showed that the ATP levels were 
decreased after UV-C or MMC treatments in WT MDFs 
and HDFs, which returned to normal levels almost 90 
minutes later, indicating increased energy demands after the 
genotoxic stress induction. Interestingly, they also verified 
whether the ATP-reduced levels were linked to nicotinamide 
adenine dinucleotide (NAD+) depletion levels. NAD+ is a 
vital metabolite coenzyme for crucial metabolic pathways, 
such as glycolysis, TCA, and OXPHOS, as well as for 
ADP(ribosyl)ation reactions mediated by PARP-1 activity 
(Fouquerel and Sobol, 2014; Hurtado-Bagès et al., 2020). 
They found a reduction in NAD+ levels in WT MDFs after 
both UV-C and MMC treatments, which is in accordance 
with ATP low levels. They also assessed PARP-1 activation 
through PAR accumulation to better understand whether the 
PARP-1 activity is associated with ATP and NAD+ depletion 
in WT and PARP-1 KO MDFs under genotoxic stress. They 
confirmed the occurrence of an increased PARylation in 
WT MDFs after two different genotoxic stresses (UV-C 

and MMC), but not in PARP-1 KO MDFs. In addition, they 
found that phosphorylated adenosine monophosphate (AMP)-
activated protein kinase (pAMPK), which regulates metabolic 
changes due to ATP depletion, was also increased in a PARP-1 
dependent manner in MDFs, and this result was confirmed 
in MDFs obtained from AMPK KO mice. Besides, CX mice 
showed low levels of NAD+ and increased levels of pAMPK 
in the liver. Altogether, these findings revealed that NAD+/
ATP depletion and AMPK activation in cells/tissues from 
CX mice are dependent on PARP-1 and link different types 
of genotoxic stresses (UV-C, MMC, and IRa) to increased 
FAO. These data also reveal that CX mice are a model of 
chronic genotoxic stress and lipodystrophy due to congenital 
DNA repair deficiency. However, adiponectin, an important 
hormone produced by adipose tissue that activates AMPK 
phosphorylation and is reduced in congenital lipodystrophy 
(Antuna-Puente et al., 2010; Lima et al., 2016; Craveiro 
Sarmento et al., 2020), was not investigated in this cell model.

Loss of sWAT was also observed in Csbm/m/Xpa-/- mice 
that mimic the human progeroid CS syndrome (Van Der 
Pluijm et al., 2007). These mice presented increased levels 
of TGs and glycogen accumulation and low serum glucose 
and IGF. Moreover, GH/IGF1 growth axis reduction was not 
due to reduced GH levels or pituitary abnormalities. Using 
transcriptome analysis, the authors found an upregulation 
of Lepr and Pparg genes that codify to the leptin receptor 
and peroxisome proliferator-activated receptor gamma, 
respectively. Furthermore, upregulation of genes associated 
with fatty acids synthesis and genes encoding antioxidant 
enzymes in the liver from Csbm/m/Xpa-/- mice were found. 
In contrast, genes involved in glycolysis, TCA, OXPHOS, 
and controlling growth (Igf1) were downregulated. A similar 
loss of sWAT was similarly found in Csbm/m/Xpc-/- mice. The 
authors also compared the Csbm/m/Xpa-/- mice model with 
naturally aged mice. They found that the latter also presented 
accumulation of glycogen and TGs, and repression of genes 
related to oxidative metabolism and the IGF axis (Van Der 
Pluijm et al., 2007).

Kamenisch and co-workers revealed that the presence 
of CSA and CSB proteins in mitochondria are essential for 
protecting against loss of sWAT (Kamenisch et al., 2010). 
After H2O2 treatment, oxidatively stressed WT fibroblasts 
had detectable levels of CSA and CSB within mitochondria. 
Further, they detected interactions between CSA or CSB and 
mitochondrial OGG1 (mtOGG1) and single-stranded DNA 
binding protein (mtSSBP1) only in H2O2-stressed WT cells. 
Cells from CSA and CSB patients and sWAT from Csbm/m 
and Csa-/- mice showed higher levels of mutations in mtDNA 
that was age-dependent. Fat tissue from 130-weak-old Csbm/m 

mice had a higher accumulation of mtDNA mutations. They 
also investigated whether the reduction of sWAT in Csbm/m 
mice was due to a reduction in the fat cell size or number. 
They found that sWAT from 130-weak-old Csbm/m mice had 
higher levels of macrophages containing granular lipofuscin 
in lysosomes, a phagocytosis marker, suggesting that the 
loss of sWAT in Csbm/m and Csa-/- mice is mediated on the fat 
number (Kamenisch et al., 2010). However, the authors did 
not investigate the metabolic parameters nor the levels of 
antioxidant adipokines, such as adiponectin, in Csbm/m and 
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Csa-/- mice. It is known that mitochondrial function is crucial 
for adiponectin synthesis in adipocytes (Eun et al., 2007), 
adiponectin is downregulated in lipodystrophies (Antuna-
Puente et al., 2010), and this adipose tissue-produced hormone 
induces antioxidant responses through NRF2 activation (Li 
et al., 2015; Ren et al., 2017). However, whether adiponectin 
is involved with the maintenance of mtDNA homeostasis in 
lipodystrophies remains to be shown.

The ERCC4 (XPF) and ERCC1 genes and XP

Another association between DNA repair deficiency, 
absence of adipose tissue, and aging was also found 
(Niedernhofer et al., 2006). The authors used the Ercc1-/- 

mice model as an accurate model of an XPF-ERCC1 (XFE) 
progeroid patient. They found that Ercc1-/- mice presented 
weight loss, and the primary mouse embryonic fibroblasts 
isolated from these mice were sensitive to oxidative stress 
induced by treatment with H2O2 and paraquat. They showed 
premature aging in several organs and had liver failure. As 
in the Csbm/m/Xpa-/- mice model, a transcriptomic analysis 
from Ercc1-/- mice liver revealed an upregulation of genes 
associated with fatty acids synthesis and genes encoding 
antioxidant enzymes. Furthermore, Lepr and Pparg genes 
were upregulated, and the Adipor2 (adiponectin receptor 2) 
was downregulated. On the contrary, low levels of glucose 
and IGF were also found in this cell model. Taken together, 
these findings show that both models of NER progeria are 
associated with loss of adipose tissue homeostasis, and this 
can be due to the accumulation of ROS and DNA damage 
accumulation. This results in the downregulation of GH/IGF1 
hormonal axis in Ercc1-/- mice to moderate the metabolism, 
indicating that IGF1 reduction may have beneficial effects 
in extending lifespan in mice. However, since DNA damage 
accumulates, degenerative processes will occur, such as loss 
of sWAT, resulting in aging. CS patients have been previously 
reported with low levels of IGF1 serum and decreased fat 
deposition (László and Simon, 1986; Park et al., 1994). As 
observed in Csbm/m/Xpa-/- mice model, the reduction of genes 
related to the GH/IGF1 growth axis in Ercc1-/- mice liver was 
also not due to reduced GH levels or pituitary abnormalities.

In the same way, Karakasilioti and co-workers provided 
evidence for a causal link between persistent DNA damage 
and the gradual appearance of progressive lipodystrophy in 
NER progeria (Karakasilioti et al., 2013). To increase the 
understanding of the role of unrepaired DNA damage in 
adipose tissue degeneration, they found that DNA damage 
signaling resulted in fat depletion due to chronic inflammation 
in Ercc1-/- fat depots from mice or in adipocytes (Karakasilioti 
et al., 2013). These mice presented a gradual reduction of 
epididymal WAT (eWAT), cervical, interscapular, and sWAT 
depots. To distinguish primary and secondary mechanisms 
related to fat depletion in Ercc1-deficient mice, the authors 
also created aP2-Ercc1F/- mice, which present aP2 expression 
mainly but not exclusively in mature adipocytes (Shan et al., 
2013), while Ercc1 is later deleted. This strategy aims to verify 
the effect of time-dependent accumulation of DNA damage 
only on adult AT depots. Progressive lipodystrophy was also 
found in eWAT, interscapular, and sWAT from aP2-Ercc1F/- 
mice, which had high TGs and low levels of adiponectin. They 
also had decreased interscapular BAT depots. 

To further understand the role of ERCC1 in WAT, the 
authors analyzed the transcriptome of eWAT depots and 
found more than 2.000 differentially expressed genes. Genes 
related to response to DSBs (for ex. ATM signaling), response 
to stress (for ex. NRF2-related oxidative stress response), 
nuclear receptor (for ex. PPAR), and pro-inflammatory (TNF, 
NFκB) signaling were upregulated. Accumulation of γ-H2AX, 
phosphorylated ATM (pATM), RAD51, and FANCI was 
observed in adipocytes from aP2-Ercc1F/- mice. Ablation 
of Ercc1 also triggered a gradual accumulation of persistent 
DNA damage, resulting in adipocytes’ necrosis. 

The BANF1 gene and NGPS

Barrier-to-autointegration factor 1 (BANF1) is another 
protein related to severe premature aging and DNA damage/
repair in NGPS (Bolderson et al., 2019; Rose et al., 2021). 
This protein is essential for controlling the DDR against 
oxidative stress by regulating PARP-1 activity (Bolderson et 
al., 2019). The authors found that skin fibroblasts from NGPS 
subjects harboring the c.34 G>A (p.A12T) pathogenic variant 
in the BANF1 gene had decreased PARP-1 poly-ADP-ribose 
activity and repair of oxidized DNA lesions induced by H2O2. 
Biochemical experiments in HEK293T cells revealed that the 
mutated BANF1 protein directly inhibits PARP-1 activity by 
binding to its NAD+ binding domain, maintaining the cellular 
levels of NAD+ after DNA damage induction. They concluded 
that the subcellular levels of the BANF1 protein are critical 
to reset PARP-1 activity under oxidative stress conditions, 
and the accumulation of oxidized DNA damage is associated 
with HGPS development. Figure 1 shows the main molecular 
findings concerning PARP-1 activity in different cellular 
models of progeroid lipodystrophy (HGPS, NGPS, and CS).

The POLD1 gene and MDPL

A multisystem disease characterized by mandibular 
hypoplasia, deafness, progeroid features, and lipodystrophy 
(MDPL) was associated with pathogenic variants in the 
POLD1 gene in seven patients (Shastry et al., 2010). Two 
MDPL patients from this work (named 300.4 and 500.4) 
were also described by Shastry and co-workers (named P3 
and P4) (Weedon et al., 2013) (Shastry et al., 2010). Shastry 
and co-workers found a progressive loss of sWAT with 
partial lipodystrophy in four young adults, while generalized 
lipodystrophy was confirmed only in older patients. Weedon 
and co-workers found that, although the patients presented 
normal body weight and appearance at birth, they had a lack 
of sWAT in early childhood. Loss of sWAT in adulthood 
was observed in almost all sites, which contrasted with a 
remarkable increase of vWAT, resulting in a greater ratio of 
vWAT to sWAT (Weedon et al., 2013). They also presented 
IR, fibrosis of sWAT, and increased levels of fundamental 
extracellular matrix (ECM) genes, such as transforming 
growth factor (TGF)-β (TGFB1) and fibronectin (FN1) 
(Weedon et al., 2013). They identified an in-frame deletion 
c.1812-1814delCTC (p.Ser605del) in the POLD1 gene in two 
patients, which affects the polymerase’s active site. Assays 
for measuring the polymerase and exonuclease activities 
revealed that the heterozygous in-frame deletion affected the 
polymerase activity, which was not detectable, whereas the 
exonuclease activity was decreased. Another study reported 
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Figure 1 - Modulation of PARP-1 activity in HGPS, NGPS, and CS. (A) In smooth muscle cells (SMCs) and fibroblasts from HGPS individuals, progerin 
accumulation results in suppression of PARP-1 protein levels. SMCs activated the error-prone NHEJ repair during S-phase, while HR was deficient during 
S-phase, leading to mitotic disaster and cell death (Zhang et al., 2014). (B) Following H2O2-induced oxidative stress in HEK293T cells, the mutated 
BANF1 protein interacts with the NAD+-binding domain of PARP-1, directly regulating its ADR-ribose (ADPr) activity. Furthermore, NGPS fibroblasts 
showed decreased PARylation and repair of H2O2-induced DNA lesions (Bolderson et al., 2019). (C) In CX mice liver, increased FAO, low levels of 
NAD+, and increased levels of pAMPK were found. These findings revealed that NAD+/ATP depletion and AMPK activation in cells/tissues from CX 
mice are dependent on PARP-1 (Brace et al., 2012, 2016). Pieces of this image are from the SMART website (Les Laboratoires Servier).
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a novel pathogenic variant in the exonuclease domain of 
the POLD1 gene (p.Arg507Cys). However, they did not 
perform functional experiments to characterize better how 
the activities of POLD1 are affected. In this case, the MDPL 
patient also had a loss of sWAT nearly in the entire body, 
except for mechanical adipose tissue (Pelosini et al., 2014). 
Reinier and co-workers also described a patient harboring the 
c.1812-1814delCTC (p.Ser605del) pathogenic variant in the 
POLD1 gene who had severe lipodystrophy and progeroid 
features (Reinier et al., 2015). The exact pathogenic variant 
was also found in Japanese subjects for two independent 
groups, suggesting that c.1812-1814delCTC (p.Ser605del) is 
a deletion hot spot variant associated with MDPL (Okada et 
al., 2017; Sasaki et al., 2018). Wang and co-workers reported 
the same family with subjects harboring two rare progeroid 
diseases, WS and MDPL (Wang et al., 2018). The proband 
had the hot spot c.1812-1814delCTC (p.Ser605del) pathogenic 
variant in the POLD1 gene. He presented a progressive loss 
of sWAT and progeroid features that started at 18 months. His 
three brothers who had WS showed a heterozygous frameshift 
pathogenic variant in the WRN gene (c.919_923delACTGA, 
p.Thr307ThrfsX5) (Wang et al., 2018). Another MDPL case 
due to the hot spot heterozygous in-frame deletion was also 
described in a Chinese patient who presented progressive 
loss of sWAT that started at the age of seven (Yu et al., 2021).

Elouej and co-workers described a new heterozygous 
pathogenic variant affecting the zinc finger 2 (ZNF2) domain 
in the POLD1 gene (c.3209 T>A; p.Ile1070Asn) (Elouej et 
al., 2017). The patient developed lipodystrophy and progeroid 
facial features. Predictions using the PredictProtein server 
suggested that the substitution of isoleucine by asparagine at 
position 1070 can disrupt the Fe-S cluster within the CysB 
motif from the ZNF domain. Furthermore, Ajluni and co-
workers also reported a new pathogenic variant affecting the 
ZNF2 domain (c.3199 G>A; p.Glu1067Lys). However, in 
this case, the two related subjects had reduced sWAT in the 
extremities but not around the neck, face, and abdominal wall. 
They presented IR, elevated CK levels, and proteinuria. They 
did not show progeroid features and deafness. In addition, 
while the MDPL patient had a high amount of nuclear atypia 
and disorganization in liver biopsy samples, these changes 
in the nuclear envelope integrity were lower when compared 
to patients harboring LMNA-pathogenic variants (p.R60G, 
p.R482Q, and p.R349W) (Ajluni et al., 2017).

Mechanistically, two independent works found that 
the progeroid features of two MDPL patients harboring the 
in-frame heterozygous deletion p.Ser605del are related to 
impaired DNA repair capacity (Fiorillo et al., 2018; Murdocca 
et al., 2021). Fiorillo and coworkers found that an MDPL 
patient carrying the heterozygous single codon deletion c.1812-
1814delCTC (p.Ser605del) in the POLD1 gene showed type 
2 diabetes, hyperinsulinemia, and IR. HDFs obtained from 
this patient had nuclear envelope abnormalities, intranuclear 
accumulation of prelamin-A, high levels of micronuclei, 
cellular senescence, and growth decline. The authors studied 
the link between MDPL and DNA damage accumulation. After 
cisplatin-induced DSBs, they found high levels of γH2AX 
foci and a DNA repair recovery delay in HDFs compared with 
WT HDFs (Fiorillo et al., 2018). Similar results were found 

in HDFs obtained from a second MDPL patient (Murdocca et 
al., 2021).

Although all these findings ratified the role of POLD1 
in adipose tissue homeostasis, our understanding of how these 
pathogenic variants result in cellular defects in adipose tissue 
is scarce, and the mechanisms that link disrupted POLD1 
activity to different diseases need to be further clarified. 

The RECQL2 (WRN) and RECQL3 (BLM) genes 
and WS and BS

WS and BS have been studied as a model for deciphering 
adipose tissue senescence. Using CRISPR/Cas9, Goh and 
co-workers generated WRN-/- and BLM-/- human pluripotent 
stem cells (hPSCs), which were differentiated in adipocyte 
precursors (APs) (Goh et al., 2020). They found that WRN-/- 

and BLM-/- APs displayed reduced cell proliferation, shorter 
telomeres, and senescence. The latter was confirmed by 
measuring the mRNA levels of the senescent biomarkers: 
p16, p21, Activin A, IL-6, and IL-8. These findings suggest 
that preadipocyte senescence may be the cause of metabolic 
complications in WS and BS. In another study, Turaga and 
co-workers transfected human diploid fibroblasts with a siRNA 
against WRN mRNA, which became senescent and presented 
a similar gene expression profile relative to fibroblasts 
established from old donor patients (Turaga et al., 2009). From 
660 differentially expressed genes found in the microarray 
analysis, 542 (82%) were downregulated, whereas 118 genes 
(18%) were upregulated, revealing a repression scenario in 
cells with lower WRN levels. Western blotting was performed 
for fourteen proteins and they confirmed the downregulation 
of: CCNB1 (Cyclin B1), CDC2 (Cyclin-dependent kinase 
1), FANCD2 (Fanconi anemia complementation group D2), 
FANCI (Fanconi anemia complementation group I), FANCJ 
(Fanconi anemia complementation group J), FAS (Fas cell 
surface death receptor), HUWE1 (E3 ubiquitin-protein 
ligase), MRE11A (Meiotic Recombination 11 homolog A), 
KIF4A (Kinesin family member 4A), LMNA (Lamin A/C), 
MAPK8 (Mitogen-activated protein kinase 8), POLD1 (DNA 
polymerase δ subunit 1), SAFB1 (Scaffold attachment factor 
B1), and TOP2A (Topoisomerase II alpha). The gene set 
enrichment analysis revealed that the genes related to adipocyte 
differentiation were downregulated in WRN-knockdown 
fibroblasts (Turaga et al., 2009). To confirm this observation, 
the authors also transfected the 3T3-L1 mice preadipocytes with 
a siRNA against Wrn mRNA. The expression of adipogenic 
markers, such as C/EBPβ (CCAAT/enhancer binding protein 
β) and fatty acid synthase (FASN), was decreased. These data 
link the role of WRN and BLM proteins in the maintenance 
of adipose tissue homeostasis.

The POLR3A gene and WRS

The POLR3A gene is crucial for cell function and 
metabolism. Pathogenic variants can alter its ability to interact 
with DNA, causing drastic changes in its transcriptional 
function and RNA polymerase I and II regulation. This 
scenario is associated with an early senescent phenotype found 
in primary WRS fibroblasts carrying the pathogenic variant 
c.3772_3773delCT (p.Leu1258Glyfs*12) in the POLR3A gene. 
WRS fibroblasts presented increased expression levels of the 
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mutant POLR3A protein in the nucleoplasm, which was not 
expressed in control fibroblasts. Senescence was revealed by 
the presence of higher beta-galactosidase-positive WRS cells 
and increased levels of p16 protein expression. Decreased 
telomere length, increased DNA damage, and variations in 
the morphology and number of nucleolus were also seen 
(Báez-Becerra et al., 2020). WRS fibroblasts exhibited strong 
phosphorylation levels of H2X in the Ser139 (termed γH2AX) 
and p53 (in the Ser15) relative to control cells, which were 
associated with increased nuclear staining. These results 
indicate that WRS fibroblasts show an increase in DNA damage 
that can induce DDR and, consequently, a p53-mediated 
cell senescence. Also, a pathway of POLR3-mediated p53 
regulation is likely lost upon POLR3A pathogenic variants 
in WRS fibroblasts. Altogether, these results revealed a link 
between POLR3A variants and DDR in WRS fibroblasts.

The SPRTN gene and RJALS
Lessel et al. (2014), proposed a clinical study of three 

patients with early-onset hepatocellular carcinoma (HCC), 
genomic instability, and progeroid features. To analyze 
Spartan function in DNA damage, U2OS cells were depleted 
of endogenous SPRTN using siRNA. Later, these SPRTN 
knockdown cells were transfected with the WT SPRTN, 
the mutant p.Tyr117Cys SPRTN, or ∆C-TER SPRTN. The 
authors found that the WT and mutated p.Tyr117Cys SPRTN 
formed nuclear foci, but not the mutated ∆C-TER SPRTN. 
The histological and immunohistochemical investigation 
of the patients’ liver tumor biopsies showed an increased 
accumulation of γH2AX and 53BP1 after CPT treatment, a 
chemotherapeutic agent that induces DPCs, including Top1 
cleavage complex (Top1ccs). This result was also confirmed 
in SPRTN-knockdown U2OS cells expressing the mutant 
p.Tyr117Cys SPRTN and ∆C-TER SPRTN. Severe growth 
defects were also observed in patient fibroblasts, which 
showed increased levels of DSBs when in the S-phase. Indeed, 
transfection of patient fibroblasts with WT SPRTN efficiently 
corrected the replication defects and reestablished cellular 
proliferation. These results revealed that cells expressing 
mutant SPRTN were unable to recover DNA replication fork 
progression, leading to DNA replication stress and replication-
related DNA damage, especially DSBs (Lessel et al., 2014). In 
the same year, Maskey et al. (2014) demonstrated that γH2AX 
foci, a marker of DNA damage, were markedly increased in 
SprtnF/- MEFs after 4-hydroxytamoxifen (4-OHT) treatments, 
and that Sprtn-/- MEFs had increased numbers of 53BP1 nuclear 
bodies, indicating incomplete DNA replication.

To better characterize the molecular mechanism by which 
SPRTN contributes to genomic stability, Lopez-Mosqueda 
et al. (2016) verified the role of SPRTN in resolving DPCs. 
They found that SPRTN-KO MEFs were sensitive to agents 
that induce DPCs, such as formaldehyde, etoposide, and 
CPT. Also, B-II-1 lymphoblastoid cells derived from RJALS 
were sensitive to those DPCs-inductor agents. These cells 
also exhibited more γ-H2AX staining after formaldehyde 
and etoposide treatments (Lopez-Mosqueda et al., 2016). 
They also confirmed that SPRTN is a DNA binding protease 
involved with the removal of DPCs in vivo and in vitro. 
These data are consistent with accelerated aging phenotypes 
observed in the hypomorphic SPRTN mouse model, linking 

DPC repair deficiency to segmental progeroid syndrome 
(Lopez-Mosqueda et al., 2016).

Vaz et al. (2016) confirmed that SPRTN protease is 
a protein specialized in the repair of DPCs, being essential 
for DNA replication progression and genome stability. They 
found that RJALS patient cells and SPRTN-depleted cells were 
hypersensitive to agents inducing DPCs. Besides, HeLa cells 
transfected with ∆-SPRTN showed a higher average number 
of 53BP1 foci relative to controls after CPT treatment. This 
was observed only in cyclin A-positive ∆-SPRTN HeLa cells, 
suggesting a role of SPRTN in preventing DSBs induced 
by DPCs during the S-phase. Thus, RJALS cells are unable 
to process DPCs during DNA replication, leading to DNA 
replication stress, one of the main causes of genome instability 
and cancer (Vaz et al., 2016).

Maskey et al. (2017) used Sprtn hypomorphic MEFs, 
which express reduced levels of Spartan but have a normal 
cell-cycle distribution, to verify the role of Spartan in the repair 
of Top1ccs, a bulky CPT-induced DPC that blocks replication 
forks. They found that Sprtn hypomorphic MEFs exhibited 
high CPT sensitivity compared to control MEFs, suggesting 
that Spartan may play a role in Top1ccs repair. Furthermore, 
they studied the effects of DPCs in Sprtn hypomorphic mice, 
which recapitulate phenotypes observed on RJALS. They 
found an accumulation of Top1ccs in the liver, indicating 
an increased binding of Top1 to DNA (Maskey et al., 2017). 
Therefore, given that Spartan plays a significant role in DNA 
stability by being responsible for DPC repair throughout DNA 
replication, pathogenic variants in the SPRTN gene affect DNA 
repair and are associated with hepatocellular carcinoma and 
premature aging, such as in RJALS. 

Figure 2 shows a model depicting the occurrence of 
unrepaired DSBs and persistent γ-H2AX in some progeroid 
diseases with remarkable loss of sWAT. As reviewed here, 
activation of DDR in HGPS, MADA, MADB, WRS, RJALS, 
and MDPL was seen, revealing an association among DSBs’ 
accumulation, aging, and loss of sWAT. Indeed, the role of 
p53 in the maintenance of sWAT homeostasis during aging 
was confirmed by Liu and co-workers (Liu et al., 2018). 
Using adipocyte-specific MDM2-knockout mice (Adipo-
MDM2-KO), the authors found that MDM2 mRNA and 
protein levels are selectively downregulated in sWAT and 
BAT, while p53 and p21 were induced in both AT depots. 
Adipose senescence and apoptosis were observed in aged 
adipose tissue, and adipocytes had an aberrant expression 
of pro-inflammatory cytokines, such as TNFα and IL-6, 
while the p21 senescent marker was increased. Furthermore, 
adipocytes from old Adipo-MDM2-KO showed remarkable 
and progressive loss of SWAT, eWAT, and BAT, and leptin 
and adiponectin levels were nearly undetectable, revealing 
an early onset of lipodystrophy in this mice model. These 
mice also had diabetes, fatty liver, and higher levels of TGs, 
insulin, and glucose in plasma. The role of p53 in adipocytes’ 
homeostasis was validated by the generation of a DKO mice 
model lacking p53. DKO mice showed a rescued phenotype 
of sWAT loss and improvement of the metabolic parameters, 
confirming that the p53 activation is related to the MDM2-
null phenotypes. However, the contribution of DNA damage/
repair to the MDM2-p53 axis in the Adipo-MDM2-KO mice 
model was not assessed.
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Figure 2 - The main DNA repair changes in progeroid diseases with remarkable loss of sWAT depicting the occurrence of unrepaired DSBs and persistent 
γ-H2AX. (A) In HGPS, progerin accumulation results in frequent DSBs, phosphorylation of ATM, ATR, Chk1, Chk2, and p53 (Liu et al., 2006). XPA 
binding to or near DSBs impairs Rad50 and Rad51 recruitment to damaged DNA (Liu et al., 2008). Furthermore, accumulated progerin sequesters NRF2, 
attenuating its transcriptional activity (Kubben et al., 2016). (B) Increased levels of DSBs are also found in HGPS, MADA, MADB, MDPL, RJALS, 
and WRS, revealing a common DDR activation by phosphorylation of ATM and p53 (Liu et al., 2005; Di Masi et al., 2008; Maskey et al., 2014; Lessel 
et al., 2014; Fiorillo et al., 2018; Báez-Becerra et al., 2020; Murdocca et al., 2021). This mechanism is involved with senescence and apoptosis (Smith 
et al., 2021). Pieces of this image are from the SMART website (Les Laboratoires Servier).

Adipose tissue-related genes associated with 
changes in the expression of dna repair and 
Oxidative stress genes

The BSCL2 gene and CGL2

The ER-localized seipin, an adipose tissue-related protein 
involved with LDs assembly (Wang et al., 2016), was associated 
with changes in redox homeostasis (Craveiro Sarmento et 
al., 2020). The authors verified that blood leukocytes from 

CGL2 individuals carrying the pathogenic variant c.325dupA 
(p.T109Nfs*5) in the BSCL2 gene displayed higher levels of 
serum oxidized glutathione and malondialdehyde, indicating 
the occurrence of oxidative stress and lipid peroxidation on 
blood from individuals presenting a paucity of sWAT since 
birth. Using LX-PCR to quantify the levels of mitochondrial 
DNA (mtDNA) damage, they found that the number of 
mtDNA lesions obtained from blood leukocytes from CGL2 
subjects was higher relative to the control groups. Besides, 
the levels of mtDNA lesions were positively correlated with 
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NFE2L2 (NRF2) mRNA levels, suggesting the activation of 
NRF2 antioxidant responses. A positive correlation was also 
found between NRF2 mRNA and serum adiponectin levels. 
Even in low levels in CGL2 subjects, this finding suggests 
that NRF2 activation occurred in an adiponectin-dependent 
manner. More studies are needed to unravel the relationship 
between NRF2 and adiponectin in the context of loss of sWAT.

Moreover, mitochondrial bioinformatics predictions 
by Mitochondrial Disease Database (MITODB) (Scheibye-
Knudsen et al., 2013), a software that determines whether a 
disease could be associated with mitochondrial commitments 
according to its phenotypes, revealed that CGL2 has a high 
probability (mito-score 92) of being related to mitochondrial 
disturbs since its clinical spectrum includes lipodystrophy, 
hepatomegaly, HTG, muscle hypertrophy, muscle hyperplasia, 
hypertrophic cardiomyopathy, and bone cysts (Lima et al., 
2016). These findings are in accordance with recently published 
data (Combot et al., 2022), who found that seipin is localized at 
ER-mitochondria sites and has a role in the Ca2+ importation to 
mitochondria. However, how this protein regulates changes in 
redox homeostasis in CGL2 subjects needs more investigation.

Since mtDNA lesions were higher and upregulation of 
NRF2 mRNA was found in CGL2 subjects, Craveiro-Sarmento 
et al. (2019) investigated whether the BER pathway could 
be regulated in blood leukocytes. These cells displayed 
higher mRNA levels of APEX1, OGG1, and OGG1α, and 
the latter is expressed both in the nucleus and mitochondria 
and has an essential role in the maintenance of mitochondrial 
functions (Lia et al., 2018). Table 2 summarizes the main 
findings of this topic.

The CAV1 gene and a severe neonatal progeroid 
and lipodystrophy syndrome

Whole blood from a subject harboring the heterozygous 
pathogenic variant c.479_480delTT and c.51_52insGTC in 
the CAV1 was associated with a severe neonatal progeroid and 
lipodystrophy syndrome. The 3-year-old patient also presented 
a heterozygous variant c.51_52insGTC in the AGPAT2 gene. 
The contribution of the latter to the development of this 
lipodystrophic progeroid disease is unclear. The 3-year-old 
patient showed severe loss of sWAT, progeroid features, and 
high levels of TGs in infancy. Fibroblasts isolated from this 
subject displayed lower levels of the caveolin-1 protein relative 
to the controls. RNA-seq analysis suggested a downregulation 
of LMNA, ATM, RECQL4, and WRN genes in the whole blood 
cells from this subject. Furthermore, the Fanconi anemia 
pathway was also downregulated. However, experimental 
data were not conducted, and a list with all differentially 
expressed genes was not provided to confirm these findings. 
Table 2 summarizes the main findings of this topic.

Critical roles of DNA damage and repair in 
adipose tissue homeostasis

The role of DNA repair enzymes in adipose tissue 
homeostasis was also studied in obesity, revealing the 
importance of DNA integrity for maintaining the functions 
of WAT. In this section, we will highlight the main findings 
concerning the role of NEIL1 (Nei like DNA glycosylase 1) 
and OGG1 DNA glycosylases, from the BER pathway; ATM, 

which is involved with the repair of DSBs; and XPV, the DNA 
polymerase eta that acts bypassing the UV-induced DNA 
lesions, being involved with damage tolerance by translesion 
synthesis (Menck and Munford, 2014). Table 3 shows the 
main findings of this section.

The role of NEIL1

NEIL1 was one of the first BER enzymes associated 
with metabolic complications (Vartanian et al., 2006). Under 
chow diet ad libitum, Neil1-/- mice displayed severe obesity, 
dyslipidemia, and hepatic steatosis. These mice exhibited 
hepatic steatosis, hyperleptinemia, and high levels of TGs and 
insulin in plasma. Besides, they found increased mitochondrial 
DNA (mtDNA) damage and deletions, especially in male 
Neil1-/- mice (Vartanian et al., 2006). In another study 
by the same group, Neil1-/- mice under chronic oxidative 
stress induced by a high-fat diet (HFD) displayed increased 
body weight and body fat accumulation, HTG, and glucose 
intolerance (Sampath et al., 2011). They also observed an 
increased hepatic expression of inflammatory genes and a 
reduction in mitochondrial DNA. These data demonstrated the 
role of NEIL1 DNA glycosylase in adipose tissue accumulation 
and mitochondrial dysfunction.

The role of OGG1

The role of the OGG1 BER enzyme in metabolic 
homeostasis has also been investigated by the Lloyd and 
Sampath groups (Sampath et al., 2012; Vartanian et al., 
2017; Komakula et al., 2018, 2021). They first found that 
Ogg1-/- mice were more susceptible to obesity and metabolic 
dysfunction relative to control mice. Under a high-fat diet 
(HFD), they presented higher adiposity, developed hepatic 
steatosis, and showed higher levels of insulin and hepatic TGs. 
Analysis of microarray and qPCR revealed that genes related 
to the TCA cycle and FAO were downregulated in the liver 
of Ogg1-/- mice, as well as the Ppargc1a and Ppargc1b genes 
that codify to the PPAR-gamma coactivator-1 alpha (Pgc1α) 
and PPAR-gamma coactivator-1 beta (Pgc1β), respectively 
(Sampath et al., 2012). 

Later, they verified that skeletal muscle from Ogg1-/- 
mice show increased lipid deposition, which included TGs, 
cholesterol esters (CE), diacylglycerol (DAG), free fatty acids 
(FFAs), and phospholipids (PLs). Further, gene and protein 
expression of Drp1 and Fis1 proteins, which are associated 
with mitochondrial fission, were higher in muscle from Ogg1-/- 
mice. Besides, the expression levels of genes regulating FAO 
and lipid uptake, as well as TCA, were increased relative 
to WT mice. No differences in 8-oxoG levels were found 
(Vartanian et al., 2017). 

The contribution of mitochondrial OGG1 to metabolic 
syndrome was also investigated. Using preadipocytes from 
transgenic mice targeting OGG1 to mitochondria (Ogg1Tg mice), 
they found a protective role of OGG1 against diet-induced 
obesity, IR, and adipose tissue inflammation (Komakula et 
al., 2018). They observed a decreased body weight, fat body 
composition, and smaller adipocytes in eWAT in Ogg1Tg mice 
under HFD. Furthermore, Ogg1Tg mice displayed low levels 
of glucose, insulin, TGs, and cholesterol in plasma, as well 
as low levels of TGs and cholesterol in the liver, suggesting 
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that the reduced fat mass observed in Ogg1Tg mice does not 
result in lipodystrophic lipid accumulation in the liver. eWAT 
of Ogg1Tg mice under HFD also exhibited high expression 
levels of Pgc1α, Sirt1, Tnfα, Ikkβ, and FAO genes, such as 
Cpt-1, Acox, Hsl, Atgl, and Pparα. Lower levels of leptin 
and higher levels of adiponectin were also found in Ogg1Tg 
mice plasma. Since they previously found a downregulation 
in Pgc1α in Ogg1-/- mice (Vartanian et al., 2017), the higher 
levels of this transcriptional co-activator from Ogg1Tg mice 
indicate the role of OGG1 in promoting the mitochondrial 
metabolism in eWAT. Additionally, since SIRT1 regulates 
adiponectin levels (Qiang et al., 2007), and both are increased 
in eWAT of Ogg1Tg mice, this work also demonstrated the 
importance of mtOGG1 for activating the SIRT1-adiponectin 
axis. They also investigated whether targeting OGG1 to 
mitochondria changes mitochondrial morphology. They found 
that mitochondrial are elongated in eWAT of Ogg1Tg mice and 
these mice presented higher expression levels of mitochondrial 
fusion proteins, such as Mfn1, Mfn2, and Opa-1. Although 
8-oxoG levels seem to be reduced in eWAT of Ogg1Tg mice 
under HFD, no statical differences were observed relative to 
WT mice. Together, these data demonstrate the metabolic 
protective role of targeting OGG1 to mitochondria in eWAT.

The role of OGG1 in adipogenesis and lipid accumulation 
was investigated (Komakula et al., 2021). Preadipocytes from 
Ogg1-/- mice displayed increased expression of genes related 
to preadipocyte differentiation (Scd1, Pparγ, and c/ebpα) 
and enhanced lipid accumulation. On the contrary, mouse 
3T3-L1 preadipocytes from Ogg1Tg mice and 3T3-L1 cells 
expressing-MTS-hOGG1a showed attenuated expression of 
genes related to preadipocyte differentiation (Scd1, Pparγ, 
and c/ebpα) and reduced lipid accumulation. Since OGG1 
activates PARP-1 (Noren Hooten et al., 2011), and PARylation 
inhibits adipogenesis (Devalaraja-Narashimha and Padanilam, 
2010; Luo et al., 2017), they assessed the role of OGG1 on 
PARylation in mouse preadipocytes. While PARP-1 protein 
levels were higher before starting adipocytes differentiation, 
its levels decreased during adipogenesis induction in both 
3T3-L1 cells (expressing-MTS-hOGG1a and GFP-controls), 
which in accordance with reduced PAR levels. However, MTS-
hOGG1a cells exhibited higher PAR levels in all time points 
of adipocytes differentiation relative to control cells. Increased 
total protein PARylation was also verified in differentiated 
primary adipocytes and adipose tissue protein extracts from 
Ogg1Tg mice, whereas primary adipocytes, adipose tissue 
extracts, liver, and BAT from Ogg1-/- mice exhibited reduced 
levels of total protein PARylation. These findings reveal the 
role of OGG1 in promoting PARP-1 activity in mice. More 
data are needed to clarify the contribution of OGG1 in human 
adipogenesis.

The role of XPV

The XP-V gene encodes polymerase η (Pol η), which 
plays a crucial role in preventing UV radiation-induced DNA 
damage (5). Defects in the gene encoding to pol η produce 
the variant form (V type) of the autosomal recessive disease 
Xeroderma Pigmentosum (XP-V) (Masutani et al., 1999). 
XP-V patients tend to have high sensitivity to UV radiation, 
which often leads them to develop skin cancer (Masutani et 

al., 1999). Chen and co-workers demonstrated that polymerase 
η deficiency in mice (polη-/- mice) causes obesity with 
visceral fat accumulation, hepatic steatosis, hyperleptinemia, 
hyperinsulinemia, and glucose intolerance. Hypertrophy of 
adipocytes, high levels of adipogenic regulator genes, such 
as SREBP1 and PPARγ, infiltration of macrophages, and 
the presence of CL structures were apparent in polη-/- mice.

Comparisons between healthy and pol η-deficient mice 
showed that polη-/- mice had higher levels of DNA damage 
and greater DDR, due to upregulation and phosphorylation 
of ATM, H2AX, p21, and p53, as well as upregulation of NF-
κB and PARP-1 (Chen et al., 2015). Further, polη-/- mice also 
displayed increased DSBs. It was also found that polη-/- mice 
under a high-fat diet, which induces oxidative stress, showed 
a DNA-damage mediated senescence. Besides, treatment 
with a p53 inhibitor, pifithrin-α (PFT-α), reduced adipocyte 
senescence and attenuated the metabolic abnormalities. (Chen 
et al., 2015). On the contrary, DNA damage attenuation 
induced by N-acetylcysteine (NAC) or metformin antioxidants 
ameliorated cellular senescence and metabolic abnormalities. 
These results indicate that high levels of DNA damage are 
responsible for promoting adipocyte senescence, playing a 
crucial role in the development of obesity and IR (Chen et 
al., 2015). These data revealed the involvement of the DNA 
lesion bypass polymerase Pol η to protect against metabolic 
comorbidities.

The role of ATM

Ataxia-telangiectasia was first described in 1941 by 
Madam Louis-Bar as a disease characterized by progressive 
cerebellar ataxia followed by oculocutaneous telangiectasia. 
In 1957, Boder and Sedgwick reported the disease in seven 
patients, pointing to a family tendency and frequent pulmonary 
infection as less marked characteristics of the disease. In the 
same year, Wells and Shy founded an association between 
subcutaneous telangiectasia with progressive familial 
choreoathetosis. The disease caused a significant disorder in the 
central nervous system, which was initially overshadowed by 
pulmonary infections (Silberpfennig et al., 1941). Furthermore, 
ataxia-telangiectasia subjects display DM and IR (Bar et al., 
1978; Blevins and Gebhart, 1996; Morio et al., 2009). 

The ataxia-telangiectasia mutated (ATM) gene encodes 
to the ATM protein, a kinase of 350 kDa that plays a crucial 
role in DNA repair and is necessary for genomic homeostasis 
maintenance (Mercer et al., 2010). DSBs activate ATM, 
which phosphorylates its substrates (or targets) downstream, 
promoting DNA repair. The main ATM targets are H2AX, cycle 
cell checkpoints kinases Chk-1 and Chk-2, and the p53 tumoral 
suppressor gene (Mercer et al., 2010; Takagi et al., 2015). 
Although ATM is better characterized as a DDR gene, recent 
studies point out that defective ATM causes atherosclerosis 
and metabolic abnormalities. Using an apolipoprotein/ATM 
heterozygous (Atm+/-/ApoE-/-) mice, Mercer and co-workers 
revealed that Atm+/-/ApoE-/- mice displayed accelerated 
atherosclerosis and multiple phenotypes of metabolic 
syndrome (Mercer et al., 2010). Further, Atm+/- mice were 
fat, hypertensive, macrophage infiltration, and showed 
hyperlipidemia under HFD. Fat accumulation and macrophage 
infiltration were also verified in Atm+/-/ApoE-/- mice.  
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VSMCs from Atm+/- mice showed higher DNA fragmentation 
induced by the prooxidant t-BHP, higher levels of p-ATM 
and γ-H2AX relative to Atm+/+ mice, and presented a delayed 
activation of Chk-2 and p53, but not Chk-1 (Mercer et al., 
2010). Furthermore, increased levels of ROS and mtDNA 
damage in Atm+/- mice were found.

Taken together, Mercer and co-workers observed that 
ATM haploinsufficiency results in DNA damage in cells that 
compose atherosclerotic plaques, in addition to accelerating 
atherosclerosis in vivo, and inducing several features of 
metabolic syndrome and mitochondrial dysfunction (Mercer et 
al., 2010). Therefore, defective ATM or its haploinsufficiency 
causes DNA damage, speeds up atherosclerosis and metabolic 
syndrome features, and may cause failure in DNA repair and 
p53 activation, resulting in the reduction of apoptosis and 
cycle cell interruption (Mercer et al., 2010).

CCAAT/enhancer binding protein α (C/EBPα) and 
PPARγ are considered the central regulator for adipocyte 
differentiation. When PPARγ is activated by an agonist in 
fibroblasts, a complete differentiation program is stimulated, 
leading to morphological changes, accumulation of lipids, and 
the expression of almost all characteristic genes of adipocytes 
(Rosen and Spiegelman, 2000). Another study revealed 
that ATM is activated during adipogenesis, besides DNA 
damage and insulin stimulation, and controls this process via 
transcriptional regulation of C/EBPα and/or PPARγ, which are 
required for a complete adipocyte maturation (Takagi et al., 
2015). Neither lipid accumulation nor adipocyte differentiation 
occurred in embryonic fibroblasts of Atm-/- knockout mice 
since there was a defective induction of C/EBPα and PPARγ 
ATM-dependent expression (Takagi et al., 2015). Besides, it 
was observed that Atm-/- mice were insulin resistant, presented 
lower levels of adiponectin and leptin, had less subcutaneous 
and interscapular adipose tissue, increased visceral fat level 
(similar to metabolic syndrome), and glucose intolerance 
when compared to normal Atm+/+ mice (Takagi et al., 2015). 
Finally, it is worth mentioning the importance of adipose 
tissue for glucose homeostasis, considering that adipokines 
such as adiponectin, leptin, visfatin, and omentin increase 
insulin sensitivity, while hypertrophic adipocytes secrete 
resistin and Tumor Necrosis Factor-alpha (TNFα), which 
decrease sensitivity to insulin (Rosen and Spiegelman, 2006). 
Therefore, ATM deficiency leads to impaired adipocyte 
differentiation, which impairs adipokine secretion, resulting 
in IR and glucose intolerance (Takagi et al., 2015). These 
data revealed the ATM in the regulation of fat metabolism. 
However, the contribution of DNA damage accumulation and 
repair in Atm-/- mice remains to be determined.

Interactome analysis of DNA repair- and 
lipodystrophy-related Genes

To better clarify the interplay between the altered DNA 
repair pathways reviewed here and the lipodystrophies’ 
cell models associated with these DNA repair changes, we 
performed some systems biology analysis. The interactions 
of the main proteins described in this review were analyzed 
using STRING database (Szklarczyk et al., 2017), Cytoscape 
desktop application (Shannon et al., 2003) and its plugins: 

Molecular Complex Detection (MCODE) (Bader and Hogue, 
2003), CentiScaPe (Scardoni et al., 2009), Biological 
Networks Gene Ontology (BiNGO) (Maere et al., 2005), 
and iRegulon (Heberle et al., 2015), and InteractiVenn web 
tool (Janky et al., 2014). The network containing 49 proteins 
was firstly built using STRING, which collects and integrates 
physical (direct) and functional (indirect) interactions. Later, 
the network was analyzed using Cytoscape. CentiScaPe 
was used to identify centrality parameters, determining the 
network nodes that are experimentally and topologically 
relevant. The protein-protein interactions (PPI) from the 
network revealed 676 interactions between DNA repair and 
lipodystrophic proteins (Figure 3A). Two protein clusters 
(densely connected regions) were detected by MCODE: 
one cluster had 42 nodes and 580 interactions, and the gene 
ontology (GO) determined by BiNGO was DNA metabolic 
process (Figure 3B). The second cluster had 30 genes and 
258 interactions, and the BiNGO-determined GO was fat 
cell differentiation (Figure 3C). CentiScaPe analysis showed 
that the most dynamic nodes of the network, referred to as 
hub-bottlenecks (in blue), include: LMNA, WRN, TP53, 
ATM, PARP1, PPARG, CEBPA, CDK2, SREBF1, and IGF1. 
InteractiVenn analysis revealed that 23 genes from the network 
are common to Cluster 1 and Cluster 2, ratifying the interplay 
of proteins from DNA repair and adipogenesis (Figure 4A). 
It is important to notice that since the STRING network 
was used as an input to Cytoscape, some experimental data 
reviewed here were not shown in STRING and, consequently, 
they were not depicted in the Cytoscape network, such as 
PARP1 with CEBPB, BSCL2 with OGG1, APEX1, and 
NFE2L2. However, even without these data, the network had 
a significant number of PPI. To scrutinize the regulators of 
the network, iRegulon was used to find the main transcription 
factors (TFs) regulating the genes of the network. The TFs 
controlling cluster 1 (DNA metabolic process) were: FOXM1, 
NF-YA, SIN3A, and E2F4 (Figure 4B). The role of FOXM1 
in DNA repair, cell proliferation, and tissue homeostasis was 
previously described in different works (Tan et al., 2007; 
Kwok et al., 2010; Millour et al., 2011; Zhang et al., 2012; 
Monteiro et al., 2013; Khongkow et al., 2014; Zona et al., 
2014). NF-YA role in DNA damage/repair was also verified 
(Jin et al., 2001; Lee et al., 2004; Lin et al., 2014). Besides, 
SIN3A is associated with genomic integrity, and DNA damage 
(McDonel et al., 2012), and the role of E2F4 in cell cycle 
progression was also shown (Ren et al., 2002). Furthermore, 
the TFs that regulate cluster 2 (fat cell differentiation) were: 
CEBPB, ATF4, JUN, and POLR2A (Figure 4C). The role of 
these TFs in adipogenesis was previously shown (Yu et al., 
2014; Guo et al., 2015; Lee et al., 2016; Bradford et al., 2019; 
Ahmed et al., 2019; Ambele et al., 2020; Bléher et al., 2020).

Data reviewed here and the interactomes shown in 
Figures 3 and 4 reveal a vigorous connection between DNA 
repair and adipose tissue-related genes. However, how this 
PPI affects the functions of these genes in the context of 
adipocyte differentiation has yet to be investigated. Further, 
the role of the abovementioned TFs in the regulation of this 
PPI remains to be elucidated. Therefore, lipodystrophies can be 
a useful model for studying the mechanisms that link genome 
instability, metabolic dysregulation, and aging.
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Figure 3 - Network comprising the DNA repair- and lipodystrophy- related genes reviewed in this paper. A) PPI network of 49 genes showed high 
connectivity (676 interactions) between genes involved with DNA repair and adipose tissue. The STRING parameters for the Homo sapiens were: 
Experiments; Database; Neighborhood; and Textmining. The minimum required interaction score was: medium confidence (0.400). Ten hub-bottlenecks 
(in blue) were depicted by CentiScaPe CytoScape plug-in: LMNA, WRN, TP53, ATM, PARP1, PPARG, CEBPA, CDK2, SREBF1, and IGF1. Two 
clusters of the main network were depicted by MCODE CytoScape plug-in, and their Gene Ontology (GO) was obtained by BiNGO CytoScape plug-
in. Cluster 1 (B) was composed of 42 genes and was associated with the DNA metabolic process, while cluster 2 (C) was formed by 30 genes and is 
related to fat cell differentiation. 

Concluding remarks and future directions

Over recent years, advancements in our understanding 
concerning the genetics of congenital lipodystrophies led to 
a better knowledge of the onset and progression of these rare 
diseases. This review highlighted several findings showing 
the interplay between genes associated with DNA repair 
and adipogenesis. Based on the many results reviewed here, 
we concluded that the maintenance of genomic integrity 
and an effective DNA repair contribute to adipose tissue 
homeostasis. Therefore, the treatment strategies of congenital 

lipodystrophies should focus on the elimination/reduction of 
DNA damage accumulation, as well as on antioxidant therapies.

Furthermore, some questions require more investigation. 
What is the link between genome stability and metabolism? How 
does DNA repair deficiency result in several forms of progeroid 
syndromes with lipodystrophy? How do lipodystrophies caused 
by pathogenic variants in adipose tissue-related genes result 
in DNA repair activation? To respond to these questions, it is 
crucial to scrutinize the DNA repair contributions in different 
adipose tissue depots obtained from adipose tissue-proficient 
and lipodystrophic cellular models. 
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