
Research Article
Plant Genetics

Send correspondence to Gabriel Rodrigues Alves Margarido. 
Universidade de São Paulo, Escola Superior de Agricultura Luiz 
de Queiroz, Departamento de Genética, Avenida Pádua Dias, 11, 
13418-900, Piracicaba, SP, Brazil. E-mail: gramarga@usp.br.

Genetics and Molecular Biology, 46, 1, e20220286 (2023) 
Copyright © Sociedade Brasileira de Genética.
DOI: https://doi.org/10.1590/1678-4685-GMB-2022-0286

Sampling strategies for sugarcane using either clonal replicates or diverse 
genotypes can bias the conclusions of RNA-Seq studies

Victor Hugo Mello1 , Ana Letycia Basso Garcia1 , Fernando Henrique Correr1 , Guilherme Kenichi 
Hosaka1 , Monalisa Sampaio Carneiro2  and Gabriel Rodrigues Alves Margarido1 

1Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, 
Piracicaba, SP, Brazil.
2Universidade Federal de São Carlos, Centro de Ciências Agrárias, Departamento de Biotecnologia e 
Produção Vegetal e Animal, Araras, SP, Brazil.

Abstract

A key procedure for ensuring statistical confidence in differential gene expression analyses is to use biological 
replicates to compare distinct groups. Biological replicates allow the estimation of the residual variation in the gene 
expression levels among samples of a given experimental condition. In sugarcane, it is possible to obtain an estimate 
of residual variability at two levels: among samples of distinct genotypes of the same experimental treatment, or clonal 
replicates of the same genotype. The sequencing costs are often a limitation to leveraging both these levels in the 
same study, stressing the relevance of efforts to determine an appropriate experimental design. We aim to investigate 
this question by comparing the transcriptional profiles of young sugarcane culms with different sucrose levels using 
both sampling strategies. Our results show that clonal replicates provided enough statistical power to identify nearly 
three times more deferentially expressed genes than the more diverse strategy. However, it resulted in potentially less 
meaningful biological results, because many of the significant genes were likely related to the particular genotype 
of choice, rather than representing a common expression profile for the compared groups. This study supports the 
development of sound experimental designs in new studies regarding differential expression for sugarcane.
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Introduction
The genus Saccharum comprises six species, of which S. 

spontaneum and S. robustum are the only wild representatives, 
spread over a large area in Asia and Indonesia, and the others 
are domesticated species – S. officinarum, S. barberi, S. 
sinense, and S. edule. The first sugarcane hybrids were obtained 
from the crossing of S. officinarum and S. spontaneum, 
followed by backcrossing to S. officinarum, such that they 
inherited the high sugar yield from the former species and 
the pathogen resistance, adaptability, and increased vigor of 
the latter (Irvine, 1999; Piperidis et al., 2010). Sugarcane 
cultivation accounts for 86% of the worldwide production 
of sugar, despite the increasing allocation of its juice for 
ethanol production. Moreover, the sugarcane residue after 
juice extraction, called bagasse, is a byproduct that can be 
used for energy generation and production of bioplastics 
(Aguilar et al., 2019; OECD/FAO, 2020). The crop is a 
renewable source of fuel and presents a significant advantage 
over fossil fuels due to the reduced emission of greenhouse 
gases (Goldemberg, 2008).

Sugarcane breeding programs usually rely on a few 
recurrent crosses between elite parents or wild germplasm to 

produce genotypes with desired traits, mainly sugar or fiber 
yield and resistance to abiotic and biotic stresses (Heinz and 
Tew, 1987; de Souza Barbosa et al., 2002; Jackson, 2005). 
Therefore, each breeding program develops new hybrid 
varieties per cycle, a few of which are commercially released 
(Cursi et al., 2022). From the milieu of available genotypes, 
scientific investigations in sugarcane are often based on a few 
elite lines that are recurrently used. For instance, two genome 
assemblies were recently published for the hybrids R570 – a 
major model in sugarcane genomic studies – and SP80-3280 
(Garsmeur et al., 2018; Souza et al., 2019). These efforts are 
remarkably relevant for sugarcane genomic research, given 
the complexity of its genome.

Also, these hybrids show a large variation in chromosome 
number and genome constitution. S. officinarum (2n = 8x = 
80) and S. spontaneum (2n = 40-128), the parental species, 
have high levels of ploidy and complex genomes per se 
(Bremer, 1925; Panje and Babu, 1960). Chromosome number 
multiplicity and molecular evidence have led to the acceptance 
of the basic number of x = 8 for S. spontaneum (Liu et al., 
2016); however, the description of a wild accession with x = 
10 brought a new panorama to the evolutionary history of the 
genus (Meng et al., 2020). These facts reveal an intricate set of 
hurdles concerning the understanding of sugarcane genomics, 
which must be considered for data-driven experiments. Hence, 
many sugarcane studies focus on transcriptomic data to avoid 
the challenges imposed by its genome (at least partially).

http://orcid.org/0000-0003-0657-0904
http://orcid.org/0000-0003-1497-2567
http://orcid.org/0000-0001-8562-1946
http://orcid.org/0000-0001-8353-1138
http://orcid.org/0000-0002-9835-7205
http://orcid.org/0000-0002-2327-0201


Mello et al.2

More specifically, the use of phenotypic trait variation 
between genotypes is a common approach found in differential 
expression studies. Gene expression studies in sugarcane 
have been conducted using a single genotype to represent the 
phenotypic group (Casu et al., 2007; Papini-Terzi et al., 2009; 
Casu et al., 2015; Vicentini et al., 2015; Dharshini et al., 2016; 
Rody et al., 2019; Nawae et al., 2020; Selvi et al., 2020), 
as well as multiple genotypes per group (Papini-Terzi et al., 
2009; Ferreira et al., 2016; Thirugnanasambandam et al., 2017; 
Hoang et al., 2017; Correr et al., 2020). Biological replicates 
provide more accurate estimates of transcript abundances 
when comparing samples from two treatment levels. Clones 
from the same genotype are subject to variability in their 
expression levels due to factors such as interactions with the 
environment and other organisms. Still, the transcriptional 
variation within clones is expected to be smaller when 
compared to plants from different genotypes, which decreases 
the dispersion of gene quantification estimates. Statistical 
parameters such as means of expression levels and their 
residual variances are the main variables considered in modern 
differential expression tests, which highlights the relevance 
of the choice of approach for performing these studies. While 
the use of clones renders a more homogeneous set of samples, 
and consequently more statistical power to detect differences 
in expression between groups, it also restrains the set of 
samples to a limited number of genotypes. Nevertheless, 
other concerns about the comparison of contrasting groups in 
RNA-Seq analysis were raised, such as minimum sample sizes 
and the use of technical replicates for ensuring reproducibility 
(Conesa et al., 2016).

Here, we evaluate the influence of using clonal 
replicates or multiple genotypes in the contrasting groups 
when performing differential gene expression analysis. 
The comparison of approaches we propose relies both on 
quantitative estimates of differentially expressed genes and 
qualitative functional enrichment tests. We aim to present an 
information-based criterion for selecting biological replicates 

for further experiments using RNA-Seq, particularly for 
sugarcane, whose genomic properties can deviate dramatically 
among genotypes.

Material and Methods

Biological material and RNA-Seq

The genotypes chosen for this study are part of the 
Brazilian Panel of Sugarcane Genotypes, located in Araras - 
Brazil. They were selected from 254 genotypes to represent 
elite lines and commercial hybrids used in Brazil, as well as 
ancestral species of the Saccharum complex (Medeiros et 
al., 2020). First, for the strategy based on diverse genotypes 
(SBDG), we selected 12 genotypes and separated them into 
four groups with three members each. This categorization 
divided genotypes based on their content of soluble solids, 
measured in ºBrix: VLB (Very Low ºBrix), LB (Low ºBrix), 
HB (High ºBrix), VHB (Very High ºBrix). The phenotypic 
characterization of this panel of genotypes, including the 
content of soluble solids, is described in Barreto et al. (2019). 
Next, for the strategy based on clones (SBC), we chose one 
representative of each group and used three clonal replicates 
of these genotypes to represent the corresponding phenotypic 
groups (Table 1).

Immature culms (internode +1) from all 24 plants were 
collected in June 2016, in Araras, followed by extraction of 
total RNA with the RNeasy Plant Mini Kit (Qiagen) according 
to the manufacturer's recommendations. We prepared the RNA-
Seq libraries of polyadenylated transcripts using the TruSeq 
Stranded mRNA LT (Illumina) protocol. These libraries were 
sequenced in a HiSeq 2500 equipment (Illumina), resulting 
in paired-end reads 2x100 bp long. The 12 libraries of the 
SBC were sequenced in three lanes, in combination with other 
samples not used in this study, with final sequencing depth 
corresponding to eight samples per lane. For the SBDG we 
used a single lane exclusively for the twelve samples.

Table 1 – Genotypes selected to compose each ºBrix group for the strategy based on clones (SBC) and based on diverse genotypes (SBDG). In the 
former strategy, we sampled the immature internode +1 of three clonal replicates (R1, R2, and R3) for each genotype per group, and samples from three 
different genotypes per group for the latter. The genotypes IN84-58, F36-819, R570, and SP80-3280 were represented in both strategies, using samples 
from different plants.

Group Genotype # of samples in SBC # of samples in SBDG Soluble solids
(ºBrix ± s.d.)

VLB

Krakatau 0 1 12.03 ± 2.02

SES205A 0 1 13.99 ± 3.14

IN84-58 3 1 14.78 ± 1.89

LB

Criolla Rayada 0 1 16.53 ± 1.37

IJ76-317 0 1 17.68 ± 1.75

F36-819 3 1 18.05 ± 1.51

HB

White Transparent 0 1 19.60 ± 2.01

RB92579 0 1 19.77 ± 1.29

R570 3 1 20.69 ± 1.24

VHB

White Mauritius 0 1 21.25 ± 1.38

SP80-3280 3 1 21.29 ± 1.88

RB835486 0 1 21.85 ± 1.86
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Downsampling and quality control

Because the SBC data showed higher average counts 
per sample, we first carried out a downsampling step. This 
procedure aimed to balance the differences in sequencing 
depth between both datasets, achieving the same amount of 
information for the two strategies. For that, we applied the 
sample function of the Seqtk suite (https://github.com/lh3/
seqtk), using as parameters a fixed random seed -s100 and 
the probability of removing a read proportional to the ratio 
of the average read counts of SBDG and SBC samples. After 
that, we used the programs Cutadapt v1.18 (Martin, 2011) and 
Trimmomatic v0.38 (Bolger et al., 2014) to: i) trim residual 
sequences of Illumina adapters from raw reads; ii) remove 
base pairs with Phred score less than 20 in a window of 5bp; 
iii) trim the first 13bp of each read; and iv) remove paired 
reads shorter than 50 bp (Table S1).

De novo transcriptome assembly and functional 
annotation

We chose to perform a de novo transcriptome assembly 
based on all samples to minimize the potential effect of 
representation biases on genes and alleles from different 
genotypes. For that, we used the libraries after downsampling 
and quality control as input to Trinity v2.8.0 (Grabherr et al., 
2011), using the default parameters except for the normalization 
by readset. Functional annotation was carried out with blastx 
and blastp (Altschul et al., 1990) significant hits (e-value < 
10−5) against the Swiss-Prot database, using ORFs identified 
in the transcriptome with Transdecoder (https://github.com/
TransDecoder/TransDecoder). We also annotated protein 
domains using hmmscan v3.2.1 (Eddy, 2009) with the Pfam 
database. All these sources of information were compiled with 
the software Trinotate v3.1.1 (https://github.com/Trinotate/
Trinotate) to produce the final annotation. This reference was 
further assessed by the identification of conserved orthologs 
among green plants and monocotyledons, using the software 
BUSCO v3 (Simão et al., 2015) with databases in OrthoDB10.

Next, we used the quasi-mapping strategy of salmon 
v0.12.0 (Patro et al., 2017) to quantify the expression of 
the assembled transcripts, separately for each sample. The 
transcriptome file was used to build an index with a k-mer size 
of 31 bp, with the additional parameters of GC bias correction 
and validate mappings to achieve higher mapping rates and 
confidence levels. We then summarized transcript counts per 
gene and normalized to obtain expression estimates in counts 
per million (CPM). CPM values were used to quantify gene 
expression for all downstream analyses.

Comparison of differential expression results with the 
full dataset

For differential expression analyses, we initially excluded 
lowly expressed genes, by filtering out genes that did not 
show a CPM greater than one for at least three samples. We 
did this filtering individually for each strategy, resulting in 
different sets of filtered genes for SBC and SBDG. Next, the 
following steps were repeated with the same criteria for both 
strategies, using the edgeR package (Robinson et al., 2010). 
We normalized the gene counts with the trimmed mean of 

M-values method (Robinson and Oshlack, 2010) and built 
MDS (Multidimensional scaling) plots using the top 2,000 
genes with the greatest pairwise variation between samples. 

For statistical tests of differential expression, we 
considered a model for gene counts parametrized as follows,

Yg,i ~ NB(µg,i , Φg)

for sample i in an experimental group, gene g, πg,i the fraction 
of gene counts per gene and sample, dispersion Φg, libraries 
size Ni, average counts µg,i = Ni πg,i , and variance Φg = πg,i 
(1+πg,i Φg). The common dispersion is the squared Biological 
Coefficient of Variation (BCV), which considers the common 
dispersion from all genes. The use of a local regression of 
genewise dispersion provides an additional level of information 
for dispersion estimates for each gene. As a result, Φg represents 
a compromise between the dispersion of counts for gene g 
and the borrowed genewise dispersion from genes with close 
average CPM.

We designed three orthogonal contrasts to test for 
differential expression for each gene, namely VLB × VHB.
HB.LB, corresponding to the null hypothesis H0:πg,VLB

 = 
πg,VHB + πg,HB + πg,LB , VHB × HB.LB to H0:πg,VHB = 
πg,HB + πg,LB    , and HB × LB to H0:πg,HB = πg,LB .  A likelihood  ratio

test was performed for each combination of gene, contrast, 
and strategy to identify the differentially expressed genes 
(DEGs), with p-values adjusted by the false discovery rate 
(FDR, Benjamini and Hochberg, 1995) at a 0.05 significance 
threshold.

Using the sets of DEGs and the annotated transcriptome, 
we performed functional enrichment analyses considering the 
frequency of Gene Ontology (GO) terms in the background 
reference and each set. Because the average gene length 
may vary among GO categories, care was taken to calculate 
effective gene lengths, based on the average length of genes in 
each sample weighted by their expression levels. We used the 
goseq package (Young et al., 2010) to perform the functional 
enrichment test for each represented GO term (p < 0.01, after 
adjusting for multiple tests with the FDR approach).

Impact of missing samples on differential expression 
results

In addition to using all samples of each strategy, we also 
analyzed the effect of systematically removing samples on the 
differential expression results. This procedure can provide a 
better understanding of the effect of individual samples on the 
downstream analysis, as well as establishing a comparison 
between this approach and the use of full data. We have 
developed a method to compare different combinations of 
subsets of samples, under the condition that valid combinations 
must have at least two samples per group. This restriction is 
necessary because minimal replication per group is required 
to properly calculate gene dispersions, even if the estimates 
are less accurate. Because there are four groups with three 
samples each, 255 combinations exist, all of which were 
individually tested for differential expression with the same 
contrasts previously designed. The number of combinations 
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of different numbers of removed samples is given by the 
binomial factor:

ni = (   ) ki

in which k represents the number of samples per group (k = 3), 
g represents the number of groups (g = 4), and i represents 
the number of removed samples, ranging from one to four. 
For each combination, we removed genes with low expression 
levels (CPM > 1 in less than two samples) and recorded the 
differential expression result as one of the following categories: 
(a) upregulated, (b) downregulated, (c) not significant, or (d) 
filtered out. One result was obtained for each gene, combination 
of samples, contrast and sampling strategy. We applied the 
same workflow for performing differential expression and 
functional enrichment tests as in the full data analyses.

Among all tested combinations of samples in our 
subsampling evaluation, one of special interest is that 
composed of the eight genotypes present exclusively in SBDG. 
The strategy based on clones comprised a single genotype per 
group of soluble solids content, namely, IN84-58, F36-819, 
R570, and SP80-3280 (Table 1). For SBDG, we chose another 
eight genotypes in addition to these, which we call exclusive 
genotypes of SBDG, specifically SES205A, Krakatau, Criolla 
Rayada, IJ76-317, White Transparent, RB92579, White 
Mauritius, and RB835486. We also performed analyses of 
differential expression with this subset of samples.

Code and data availability

All the scripts are available at the Github repository 
(github.com/victor-h14/BiologicalReplicates). The raw RNA-
Seq reads are available at the European Nucleotide Archive, 
with all the samples from the BioProjects PRJEB44302 for 
SBDG and PRJEB40481 for SBC.

Results 

Gene identification in the sugarcane transcriptome

The objective of our study was to compare the sampling 
strategies based on clones (SBC) and based on diverse 
genotypes (SBDG) for RNA-Seq studies. Because of that, 
we performed a de novo transcriptome assembly using all 24 
samples from both sampling strategies to use as a reference 
for gene quantification. The resulting transcriptome included 
598,874 transcripts for a total of 262,281 assembled genes 
(Table S2). Reads from both strategies were evenly represented 
in the assembly, with an average mapping rate of 76.5% among 
samples (Table S1). Genes had an average size of 932.63 bp 
and the transcript N50 was 1,687 bp. The majority of genes 
had a single corresponding transcript isoform (64.3%). 
To assess the quality of our transcriptome, we checked the 
representation of conserved single-copy orthologs from 
Viridiplantae and Liliopsida clades – green plants and 
monocotyledons, respectively. We identified 95.1% of the 
430 orthologs conserved in green plants without sequence 
fragmentation. For the set of orthologs in monocots, 93.1% 
of 3,278 orthologs were fully represented.

Comparison of differential expression results 
between strategies

Our goal was to compare both datasets based on 
the results from the differential expression and functional 
enrichment analyses. We followed a standard procedure for 
these tasks using edgeR and goseq. After library sizes were 
normalized, the quantification outputs still contained a large 
amount of lowly expressed genes. We selected genes with 
CPM > 1 in at least three samples, for each strategy separately, 
resulting in different sets of kept genes for SBC and SBDG. 
The former presented 42,566 genes after filtering, and 41,934 
remained in the latter (Figure S1).

An initial exploratory investigation allowed for 
assessing the main characteristics of expression profiles with 
a multidimensional scaling plot (Figure 1A). For the SBC, 
we observed clustering of replicates from each genotype, 
indicating high similarity in the expression profiles of clonal 
replicates. As expected, the first dimension of the plot separated 
replicates of genotype IN84-58 from the remaining groups, 
reflecting their contrasting genetic backgrounds. On the other 
hand, the biological variance of gene expression was much 
higher in the diverse approach than in the clone approach. 
In SBDG we found a little overlap of samples from the same 
phenotypic group, except for the VLB genotypes, which 
again were isolated from the others by differences in the first 
component. No clear pattern was observed for genotypes of 
VHB and HB. In fact, only two LB S. officinarum accessions, 
Criolla Rayada and IJ76-316, clustered apart.

The MDS analysis provided a broad view of the overall 
patterns of transcription abundances for the set of samples, 
but did not allow a closer assessment of individual genes. We 
then used the differential expression testing approach for a 
detailed investigation of the transcriptome expression profiles. 
We arranged the four groups of samples into three orthogonal 
contrasts. Hence, we conducted three tests of differential 
expression for each gene. The quantity of DEGs identified 
via the SBC largely surpassed that of SBDG for all contrasts, 
especially in VHB × HB.LB and HB × LB (Figure 1B, 
File S1). In these two contrasts, we can observe a mass of 
significant DEGs in relatively low absolute logFC values 
for SBC. Conversely, only a few DEGs were significant 
for SBDG, even for genes showing fold changes of large 
magnitude. We identified non-significant genes even at  
|logF C| > 10, standing for more than a thousand-fold variation 
of read counts. The non-significance of genes with high values 
of logFC is possible because the adopted likelihood model for 
gene abundance considers gene counts and variance within 
groups for the likelihood ratio test. We can thus (at least partly) 
attribute the lower number of DEGs for the SBDG to the higher 
residual variance in gene counts observed with this strategy. 
An indicator of dispersion with a meaningful interpretation is 
the Biological Coefficient of Variation (BCV), calculated as 
the square root of the negative binomial dispersion of counts. 
The average BCV for all filtered genes of the SBC was 0.087, 
and 0.440 for the SBDG, representing a five-fold variation 
between strategies. In addition, for the set of genes retained 
after filtering for both strategies (37,535 genes), 98% of them 
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showed higher BCV in the SBDG. These numbers reinforce 
the role of dispersion as a key parameter that distinguishes 
the approaches regarding differential expression.

The intersection of sets of DEGs between strategies 
revealed that the majority of genes identified as significant in 
the SBDG was also significant in the SBC, but the opposite 
was not true (Figure 1E-G). About 71% of DEGs detected 
with the SBDG were shared with the other strategy, for each 
of the three contrasts. This fact suggests that using more 
diverse genotypes favored the identification of genes with 
similar expression patterns among the group members. The 
observation regarding the high residual variance for VHB x 
HB.LB and HB x LB also strengthens this hypothesis, because 
only the more homogeneously expressed genes achieved 
significance. On the other hand, the use of clones was also 
able to identify many other genes as differentially expressed, 
which are possibly genotype-specific and may not be directly 
associated with the phenotype of interest.

The current work presents a systematic analysis of the 
effects of competing strategies of biological replication over 
gene expression studies. Our goal is not to provide a biological 
interpretation of expression patterns, but to justify with 
biological reasoning the use of each methodology. Therefore, 
we chose the functional enrichment analysis as a meaningful 
approach for understanding the consequences of data-mining 
over the sets of filtered and differentially expressed genes. 
Within each set of genes that passed the expression filter, 
we found 12,364 and 11,979 genes containing at least one 
attributed GO term for SBC and SBDG, respectively (File S2). 

Using these genes as a background reference, we performed 
a functional enrichment analysis to identify GO terms more 
frequent among DEGs than expected by chance alone (Figure 2, 
File S3). For the SBDG, the contrast VHB x HB.LB resulted 
in only one enriched term (adenosine diphosphate binding), 
and HB x LB had no enriched GO.

Assessment of strategies using subsets of samples

When removing a fraction of samples from the 
experimental design, the average values of gene counts and 
variance are modified and less precise, such that the resulting 
set of DEGs may be different. For this reason, we adopted the 
strategy of systematically removing samples as a validating 
procedure of the expression results. Also, this approach 
evaluates the effect of variation on the number of samples 
per group, such as in unbalanced experiments, or missing 
samples. Handling mistakes, low volumes of biological 
material, difficulties in preparing the sequencing libraries, 
and other unexpected events often cause (random) loss of 
samples. Because each strategy includes 12 samples divided 
into four groups, and there must be at least two per group for 
estimating the dispersion parameter, we could jointly remove 
a maximum of four samples. These restrictions produced 255 
combinations, which were individually tested for differential 
expression.

We observed that, as the number of removed samples 
changed from one to four, the more differential expression 
disagreed with the results obtained with the full dataset. Albeit 
at low rates, we could identify genes with an inverted result of 

Figure 1 – Gene expression patterns and differentially expressed genes for both sampling strategies. (a) Multidimensional scaling (MDS) plot showing 
pairwise distances between samples based on the most divergent genes for each pair. The panels represent the MDS plot for the strategy based on clones 
(SBC) and the strategy based on diverse genotypes (SBDG), respectively. (b, c, d) Mean-difference plot grid showing differentially expressed genes 
for all contrasts and strategies. Fold changes (logFC) and average expression levels in counts per million (logCPM) are shown in base 2 log scales. The 
rows indicate the three orthogonal contrasts, while the columns correspond to the strategies of sampling biological replicates. Colors represent the result 
of differential expression tests (p < 0.05, after FDR correction for multiple tests). (e, f, g) Differentially expressed genes shared by the strategies based 
on clones and on diverse genotypes. The diagrams represent the number of genes detected as significantly differentially expressed in the contrasts. The 
strategy based on clones is in blue, while the strategy based on diverse genotypes is in green. The figures represent orthogonal contrasts VLB × HB.LB.
VHB (b, e), VHB × HB.LB (c, f), and HB × LB (d, g).
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Figure 2 – Enriched gene ontology terms by strategy and contrast. There was no significant test result for HB × LB in the strategy based on diverse 
genotypes (p < 0.01, after FDR adjustment). The numeric axis represents the number of differentially expressed genes for each particular gene ontology term.

differential expression, i.e., miscalls of up or downregulation, 
which occurred from 10−6 to 10−5 % of genes for the SBC, and 
from 10−5 to 10−4 % for the SBDG. Using the original data 
results as a gold standard (full set of samples), the strategy 
based on clones showed a relatively lower percentage of false 
negatives and a higher percentage of false positives – green 
and purple curves in (Figure 3), respectively.

Because our systematic removal of samples provided 
a large number of differential expression tests for each gene, 
we could establish a high confidence set of DEGs – those 

with at least 95% of tests with the same results (Table 2). We 
then used this high confidence set for performing a functional 
enrichment analysis (Figure 4, File S4). The enriched GO 
terms for the full set of DEGs and the high confidence set 
were essentially different. There were only three enriched 
terms for the SBDG, of which two had also been detected 
with the full dataset, and the other was only significant for the 
SBC. Given the low number of annotated and differentially 
expressed genes for the contrasts VHB × HB.LB and HB × 
LB, it was not possible to detect any enriched term for the 
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SBDG. Analyzing exclusively the SBC, nearly 73% of the 
terms were also enriched in the full dataset for VLB x VHB.
HB.LB, 50% for VHB x HB.LB and 75% for HB x LB. Also, 
the number of enriched terms was high, even with fewer 
DEGs for the test. Some terms were exclusive for the high 
confidence set, such as zinc ion binding, proteolysis, and 
negative regulation of translation. The opposite also occurred, 
such as for kinase activity.

Contribution of SBDG exclusive genotypes for 
differential expression

We compared the DEGs identified in the subgroup of 
genotypes absent in SBC with the data from SBC and SBDG, 
using the same parameters for the analysis (Figure 5). It was 
possible to observe distinct patterns between the contrast VLB 
x VHB.HB.LB and the others, regarding the number of DEGs 
called by each approach. In the first contrast, the total number 
for SBDG was greater than for the exclusive set, as opposed 
to the results for the last two contrasts. We also highlight that 
the larger fraction of DEGs detected in SBDG concentrated 
in the intersection with the other approaches.

Discussion
Analyzing the patterns found in the MDS plots, we can 

infer that transcriptional profiles agreed only partially with 
the phenotypic assortment of genotypes into four categories 
of soluble solids content (Figure 1). This plot also shows 
a recurrent observation in the other analyses regarding the 
sharp disparities found between VLB and the other groups. 
This fact is evident in the separation of samples in Figure 1, 
the increased number of DEGs from the VLB x VHB.HB.LB 
tests, when compared to the other contrasts, and the functional 
enrichment from SBDG (Figure 2). A likely explanation 
is the genetic background of the genotypes, because VLB 
comprises S. spontaneum accessions, while VHB, HB, and 
LB comprise S. officinarum and commercial hybrids. Despite 
having a genomic contribution from both parental species, 
commercial hybrids underwent backcrossing to S. officinarum 
to enhance sugar yield, which makes them more alike to 
this species in terms of expression. Our result matches the 
clustering pattern found in the MDS plot for sugarcane leaf 
samples, in which S. spontaneum genotypes separate from the 
remaining (Correr et al., 2020). This interpretation also agrees 
with cytogenetic information from R570, because about 80% 
of its chromosomes presented similarity to S. officinarum 
and 10% to S. spontaneum (D’Hont et al., 1996; Garsmeur et 
al., 2018). Another reasonable explanation for the observed 
disparity of VLB is the imbalance in chromosome numbers, 
which remains to be assessed by karyotyping. Changes in 
ploidy levels and aneuploidy can lead to systematic differences 
in phenotype and gene expression (Liqin et al., 2019; Johnson 
et al., 2020).

This assumption was reinforced by the SBDG contrasts, 
where VHB × HB.LB and HB × LB showed only a few DEGs. 
When considering the fraction of significant DEGs in common 
between strategies using the full dataset, the amount of shared 
significant tests was nearly constant over the three contrasts 
in SBDG (Figure 1). The same was not true for SBC, which 
had a rate of shared DEGs ranging from 2 to 32%. A feasible 
explanation is that sugarcane genotypes have high variability 
of expression among each other, and the use of clones provides 
enough statistical power to detect it. However, a substantial 
proportion of these genes might not be actually related to 
the biological phenomenon of interest, because the lower 
variability in the SBC led to the identification of DEGs with 
lower fold-change magnitudes. Extrapolating these results, 
we can suggest that the SBC was not fully representative of 
the groups of interest, because of the low agreement of DEGs 
identified in common with the SBDG.

Several of the identified enriched GO terms fit in 
molecular mechanisms with no explicit relationship to the 
accumulation of sugars or carbon partitioning. For instance, 
the contrast HB × LB in SBC, which represents a direct 
comparison of the genotypes R570 and F36-819, showed a 
significant enrichment of kinase activity, which may indeed 
represent an important mechanism that distinguishes the 
phenotypes of these plants. However, phosphorylation is a 
broad molecular mechanism of signal transduction, and it could 
be related to other processes other than sugar accumulation. 
Besides, the expression patterns of genes associated with 
protein phosphorylation were not consistent among the other 

Figure 3 - Effect of sample removal on the results of differential expression. 
The values represented by the continuous (SBC) and dashed (SBDG) curves 
are the averages of differential expression tests for all possible combinations 
and contrasts, as a function of the number of removed samples. The red 
curve indicates the concordant genes in the original and subsampled 
datasets; in yellow, the differentially expressed genes with inverted results, 
whether up or downregulated; in green, genes that were not significant due 
to subsampling; in blue, filtered genes after subsampling; and in purple, 
genes that appeared as spuriously differentially expressed with subsampling.

Table 2 – The differentially expressed genes (DEGs) in the high confidence 
set. We identified these genes as differentially expressed in at least 95% of 
the subsampling combinations when removing from one to four samples 
in each strategy. We considered only the combinations which presented a 
minimum of two samples per experimental group. For each strategy, we show 
the total number of DEGs and those annotated with gene ontology terms.

Contrast
SBC DEGs SBDG DEGs

Total Annotated Total Annotated

VLB × VHB.HB.LB 14240 2688 2960 458

VHB × HB.LB 5774 829 44 7

HB × LB 5371 994 34 7
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Figure 4 – Enriched GO terms by strategy and contrast for the high confidence set of DEGs. This set contains genes with a significant test for differential 
expression in more than 95% of combinations of samples (p < 0.01, after FDR adjustment).

genotypes. On the other hand, some of the terms found in the 
SBDG functional enrichment are coherent with observable 
phenotypic traits, e.g., recognition of pollen and cellulose 
biosynthetic process. Pollen recognition is a potentially vital 
activity for genotypes in the VLB group, because it is composed 
uniquely of wild accessions, which probably are prone to 
perform sexual reproduction without human assistance. 
Also, the discrepant levels of fiber in VLB × VHB.HB.LB 
groups corroborate the enrichment of cellulose biosynthetic 
activity. With the outcomes of functional enrichment for the 
high confidence set, we could recognize several GO terms 
in disagreement with the DEGs based on the full set. The 
terms discussed above such as pollen recognition, cellulose 
biosynthetic process, and kinase activity were not significant 
for these high confidence genes. These examples highlight 
the lack of similar expression patterns among all samples. 

Besides the biological and residual sources of variation 
in gene expression quantitation, stochastic processes also 
contribute to the variance of RNA-Seq data, such as the 
random sampling of transcripts in library preparation. For 
SBDG, we could also consider that the genotypes in each 
group have different contributions to the differential expression 
result. More precisely, combining a diverse set of genotypes 
into an experimental group increases the overall variability 
of expression levels for most genes and modifies the average 
counts per group. 

We presented a selection of four genotypes for the 
SBC, which is one particular choice among 81 (34) possible 
combinations if maintaining the same categories from the 
SBDG. Examining the wide distribution of genotypes in the 
MDS plot for SBDG (Figure 1), we can presume that the choice 
of genotypes can lead to sharply discordant sets of DEGs. This 
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Figure 5 – Differentially expressed genes shared by three sets of samples: SBC, SBDG, and SBDG-exclusive genotypes. The method for filtering 
genes with low expression was the same for the three sets, adopting a more permissive criterion due to the lower number of samples in the exclusive set 
(CPM > 1 for at least two samples). We only considered the genes passing the low expression filtering criterion in all sets (38,420 genes). The diagrams 
represent contrasts VLB × HB.LB.VHB (a), VHB × HB.LB (b), and HB × LB (c). Correlation of log fold changes among the two strategies and the 
set of SBDG-exclusive samples, for contrast VLB × VHB.HB.LB (d). In the main diagonal, the histograms show how the distribution of differentially 
expressed genes (DEGs) and non-DEGs, as a function of the log fold change (logFC). The classification of genes considered the result of differential 
expression for all pairwise groups of strategies (SBC, SBDG, and SBDG-exclusive genotypes). Pink points represent genes with a significant test for a 
given pair of groups, and gray points represent non-significant genes for the same pair.

is a result of the faulty coherence of genotypes inside the groups 
VHB, HB, and LB. Furthermore, the combination-sensitive set 
of identified DEGs could drive mistaken conclusions regarding 
the biological issue of interest. For example, a specific gene 
might be called differentially expressed due exclusively to the 
choice of sampled genotypes, instead of representing a general 
phenomenon for other genotypes with similar phenotypic 
characteristics. The outcomes of the analyses using subsets of 
samples reinforce this hypothesis (Figure 3). We can observe 
an increasing number of genes with contradictory results of 
differential expression tests when compared to the full-data 
tests. This fact implies that simply including or not some 
genotypes may lead to changes in the list of DEGs. Another 
result that supports the caveats on genotype choice is the 

number of DEGs for VHB x HB.LB and HB × LB contrasts 
(Figure 5). In the former contrast, the exclusive genotypes of 
the SBDG showed 625 DEGs that could only be found with 
these samples, versus 31 in SBDG. The difference was even 
more prominent for HB × LB. Notably, Criolla Rayada and 
IJ76-317 are S. officinarum accessions that integrate the LB 
group, both with a discrepant expression profile according to 
the MDS analysis. The simple inclusion of F36-819 in this 
group might have been enough to disrupt the homogeneity 
detected between the other two genotypes. These observations 
show how the lack of uniformity in the SBDG genotypes 
leads to a low number of significant DEGs. Moreover, they 
indicate that this uniformity may be sensible to the choice of 
genotypes to form the experimental groups.



Mello et al.10

The behavior of (mis)matches in the detection of DEGs 
(Figure S2, S3) can be helpful to illustrate some properties of 
each strategy. First, they illustrate the more robust response of 
the SBC regarding the removal of samples by the lower rate of 
mismatches. This fact reinforces that SBC showed increased 
statistical power to detect DEGs. Second, these results also 
suggest that individual samples can have a determinant role on 
the identification of differential expression for a considerable 
number of genes, mainly for the SBDG. As shown in Figure S3, 
the ni × ni grids did not reveal a uniform or linear distribution 
pattern of the power to detect differential expression. There 
were both rows and columns densely occupied by DEGs, in 
patterns contingent on the number of removed samples. They 
occurred in multiples of 25% for three samples and 33% 
for four, which correspond to the fractions of combinations 
without a specific sample. Figure S2 revealed a similar pattern, 
noticeable by the steep inclines of cumulative distributions 
for particular mismatch rates.

We suggested that the SBDG yielded fewer DEGs 
due to combining genotypes with more variable expression 
patterns than the SBC. Also, our interpretation of the results 
presented evidence towards the prevalence of more biologically 
meaningful DEGs for SBDG, instead of simply revealing 
genotype-specific profiles. However, a feasible criticism 
over these hypotheses is that using a collection of genotypes 
per phenotypic group could still lead to genotype-specific 
DEGs, but for more than one genotype at once. A necessary 
step to avoid this issue is to choose a diverse set of genotypes 
for the experimental groups, which should be unrelated and 
representative of the population of interest. For tackling this 
question, we performed the complete analysis procedure using 
the genotypes exclusive to the SBDG, such that we could assess 
the direct contribution of the genotypes shared with the SBC, 
the genotypes absent in SBC, and the intersection between 
them. Interestingly, this analysis showed that the intersection 
between SBC and the exclusive set concentrated most of the 
SBDG genes in all contrasts (from 37 to 48% of DEGs). This 
result agrees with the expectation of a shared set of genes 
among all 12 genotypes. Moreover, the correlations of logFC 
in VLB x VHB.HB.LB among the approaches revealed that 
SBDG had an intermediate pattern for differential expression 
between SBC and the exclusive set of samples (Figure 5). 
Another important observation is that the increased number of 
samples for SBDG compared to the exclusive set of samples 
led to a larger number of DEGs in the first contrast and a 
smaller number in the other two. Thus, we can hypothesize 
that as the number of genotypes per group increased, the issue 
of detecting genotype-specific DEGs and genes with reduced 
biological meaning decreased.

Our results emphasize that sampling strategies are 
sources of bias in differential expression analysis. This 
conclusion draws special attention to vegetatively propagated 
species, as is the case of sugarcane, because many researchers 
opt to use clones as biological replicates. We suggest that the 
choice of replication strategy should be planned carefully. This 
recommendation joins previous guidelines for differential 
gene expression studies, such as the number of biological 
samples, library size, and sequencing design (Conesa et al., 
2016; Lamarre et al., 2018).

With the increasing application of next-generation 
sequencing to investigate complex transcriptomes, such as 
that of sugarcane, recent studies aim to apply these techniques 
to unravel the molecular mechanisms controlling several 
phenotypic traits. However, a single biological replicate in 
each contrasting group is not enough for performing this sort 
of analysis, leaving to the researcher the choice of a suitable 
experimental design. Our study intended to illustrate the 
strengths and caveats inherent to two sampling strategies for 
biological replication, namely by using a diverse group of 
genotypes with common phenotypic characteristics or clones 
from the same genotype, chosen to be representative of this 
group. The results provided evidence of discrepancies in (i) 
quantitative terms, regarding the number of genes detected as 
differentially expressed, (ii) consistency, when subjected to 
self-validation using subsampling, and (iii) inferred biological 
conclusions from the functional annotation of differentially 
expressed genes. These analyses suggest that the use of clones 
as biological replicates may yield somewhat restricted results, 
biased by the particular choice of genotypes. Regardless of 
these concerns, the direct comparison of two genotypes can 
still be useful in particular situations. For instance, when there 
is no need to understand how a broad phenomenon occurs for 
a species, or when the aim is actually to uncover genotype-
specific mechanisms. On the other hand, the presence of a 
representative set of genotypes within the same group can 
lead to more reasonable biological conclusions. In any case, 
it is possible to combine these strategies to refine the level of 
details, if economically viable. This research offers support for 
experimental design planning of new studies using differential 
expression as a method of investigation in sugarcane and other 
plants with high genomic complexity.
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