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Abstract

Enhancers are essential cis-acting regulatory elements that determine cell identity and tumor progression. Enhancer 
function is dependent on the physical interaction between the enhancer and its target promoter inside its local chromatin 
environment. Enhancer reprogramming is an important mechanism in cancer pathogenesis and can be driven by both 
cis and trans factors. Super enhancers are acquired at oncogenes in numerous cancer types and represent potential 
targets for cancer treatment. BET and CDK inhibitors act through mechanisms of enhancer function and have shown 
promising results in therapy for various types of cancer. Genome editing is another way to reprogram enhancers in 
cancer treatment. The relationship between enhancers and cancer has been revised by several authors in the past 
few years, which mainly focuses on the mechanisms by which enhancers can impact cancer. Here, we emphasize 
SE’s role in cancer pathogenesis and the new therapies involving epigenetic regulators (BETi and CDKi). We suggest 
that understanding mechanisms of activity would aid clinical success for these anti-cancer agents.
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Characteristics and types of enhancers

Characteristics of enhancers

Enhancers are orientation-independent cis-acting 
regulatory elements that increase transcription activity from 
a distant promoter. Enhancer regions have higher DNA 
accessibility and nucleosomes in enhancer regions have 
signature histone modifications such as H3K4me1 and 
H3K4me2 and are usually depleted of H3K4me3 (Kundaje 
et al., 2015). There are four enhancer-activation states: inactive, 
primed, poised and active. Inactive enhancers are buried in 
compact heterochromatin and have no transcription factor 
association. Primed enhancers are bound by transcription 
factors and are inside Dnase I hypersensitive open chromatin, 
but still need further signal or cofactors binding to exert active 
enhancer function. Poised enhancers are mostly found in 
embryonic stem cells and are primed enhancers with repressive 
histone modifications, such as H3K27me3 (Rada-Iglesias 
et al., 2011). Active enhancers are marked by H3K27Ac. They 
are actively transcribed into enhancer RNA (eRNA) by RNA 
polymerase II and function to boost target gene expression.

Types of enhancers

There are mainly two types of enhancers depending 
on their activation stimuli and function: cell type-specific 
enhancers and signal-dependent enhancers (also called 
inducible enhancers). Cell type-specific enhancers represent a 

large proportion of all enhancers. In a recent study, researchers 
identified active enhancers across 10 human tissues, and 
most of them are tissue-specific enhancers (Xiong et al., 
2018). Enhancer-target networks and enhancer RNA profiles 
are robust identifying features for different cell and tissue 
lineages(Cao et al., 2017; Tu et al., 2021). All different cell 
types in the human body contain the same genome, and 
one of the vital factors that determines cell type-specific 
gene expression is cell type-specific enhancers. Although 
mammalian genomes contain millions of potential enhancers, 
only a small percentage is active in any given cell type. 
For a specific gene locus such as T-cell acute lymphocytic 
leukaemia 1 (TAL1), several developmental enhancers have 
been identified and different choices and combinations of 
these enhancers are used for different cell types (Heinz et al., 
2015). The -3.8kb (upstream) and +19kb (downstream) 
enhancers drive TAL1 expression in human umbilical vein 
endothelial cells and hematopoietic stem and progenitor 
cells (Sánchez et al., 1999; Göttgens et al., 2004), and the 
+51kb enhancer is essential for TAL1 transcription in K562 
erythroid cells (Delabesse et al., 2005). These enhancers are 
activated according to the cell’s specific developmental stage 
and environmental stimuli and work to boost the expression 
of cell identity genes. 

Pioneer TFs, lineage-dependent TFs (LDTFs), and signal-
dependent TFs (SDTFs) work collaboratively to select and 
activate inactive and poised enhancers and establish lineage-
specific gene expression (Heinz et al., 2010). Chromatin 
remodelers and histone modifiers are also important players 
in the activation of cell-type specific enhancers (Park et al., 
2021). There are two types of mechanisms by which LDTFs 
and SDTFs work together to select and activate cell type-
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specific enhancers (Heinz et al., 2015). For one mechanism, 
there is a hierarchical relationship between LDTFs and SDTFs 
binding, where LDTFs act as pioneer factors that initially 
select enhancers and the binding of SDTFs can further induce 
the enhancer activity. For the other mechanism, SDTFs 
contribute directly to enhancer selection through collaborative 
interactions with LDTFs.

While cell type-specific enhancers play a vital part 
in cell-type determination, some enhancers serve as main 
regulators of gene expression in response to various acute 
signaling pathways, where signal-dependent transcription 
factors preferentially bind to enhancers (Tan et al., 2023). 
These enhancers belong to signal-dependent enhancers. 
Examples of signal-dependent enhancers include hormone-
responsive enhancers (Shlyueva et al., 2014; Hoffman et al., 
2022), virus-inducible enhancers (Thanos et al., 1993, 1996), 
metal-responsive enhancers (Karin et al., 1987; Westin and 
Schaffner, 1988), and NF-kappa B and cytokine-inducible 
enhancers (Collins et al., 1995). 

Super-enhancer

Super-enhancer (SE) is the term used to describe clusters 
of active enhancers that are in a high density in a genomic 
region. Super-enhancers have the function of regulating 
genes essential for cell identity determination. SEs are 
enriched with more TFs, Mediator complexes, and RNA Pol 
II molecules than typical enhancers, which results in higher 
transcriptional activity (Yoshino and Suzuki, 2022). BRD4, 
p300, CDK7, CDK9, and MED1 (Mediator Complex Subunit 
1) are all important factors that characterize SEs (Khan and 
Zhang, 2019). High concentrations of transcription factors, 
co-activators (BRD4 and p300), and RNA polymerase II 
forms transcriptional condensates to drive the interaction 
between promoter and enhancer. SE has been implicated in 
the pathogenesis of various types of cancer. SEs are extremely 
sensitive to perturbations by drugs (Bradner et al., 2017). A 
small change in concentrations of SE components causes 
drastic changes in SE-associated gene expression (Lovén 
et al., 2013). This has been utilized when exploring potential 
therapy to treat cancer and will be discussed in detail in part 
4.1 targeting mediators of super-enhancer function.

Molecular mechanism of enhancer function

Polymerase II and eRNA 

Polymerase II is recruited to active enhancers and 
produces short transcripts. Pol II is then transferred from 
enhancers to promoters to initiate transcription at the target 
gene (Gibbons et al., 2022). SEs are characterized by abundant 
association with Pol II and are most sensitive to interference 
with Pol II function. Inhibition of Pol II function through 
CDK7 could be utilized in cancer therapy and is discussed 
in detail in part 4.1.2 CDK7 inhibitors.

The transcripts that come from the transcription of 
enhancers are called enhancer RNA (eRNA). Most eRNAs are 
short transcripts (around 500bp) that are non-polyadenylated 
and unspliced (Andersson et al., 2014a,b). Only a small number 
of eRNAs are long (several kb in size) that are polyadenylated 
(Koch et al., 2011). eRNA production is predictive of active 

enhancer function (Melgar et al., 2011; Andersson et al., 
2014a; Core et al., 2014; Henriques et al., 2018) and eRNA 
level correlates with the transcriptional activity of their target 
gene (Kim et al., 2010). Transcription from enhancers can be 
unidirectional (Koch et al., 2011) but is mostly bidirectional 
(Kim et al., 2010). eRNA is typically unstable (Lubas et al., 
2015), so it is not always detectable even when the enhancer 
is functional (Andersson et al., 2014a; Mikhaylichenko 
et al., 2018). There has been evidence that eRNA might be 
contributing to enhancer function through several mechanisms, 
including increasing chromatin accessibility (Mousavi et al., 
2013), recruitment of cofactors (Kaikkonen et al., 2013; Bose 
et al., 2017), maintenance of transcription factor binding 
(Sigova et al., 2015), enhancer-promoter contact (Li et al., 
2013), and phase separation (Nair et al., 2019). 

Promoter-enhancer interaction

The function of an active enhancer is dependent on 
the physical interaction between the enhancer and its target 
promoter. Several models have been proposed for enhancer-
promoter communication, including tracking, chaining, and 
looping (the loop extrusion model) (Furlong and Levine, 
2018). In the tracking model, Pol II binds to an enhancer 
through interaction with transcription factors and tracks along 
the chromatin, pulling the enhancer with it until it reaches 
its target promoter. In the chaining model, TFs bound to 
the enhancer oligomerize and form a chain to interact with 
the target promoter. In principle, the tracking and chaining 
model could only work in short-range interactions, and the 
most widely accepted model of action is the loop extrusion 
model. The loop extrusion model incorporates looping and 
tracking. In the loop extrusion model, cohesin complexes 
form tripartite rings around chromatin and translocate along 
the chromatin fiber in opposite directions, therefore actively 
extruding a progressively larger chromatin loop until they 
are stopped by CTCF boundary elements (Fudenberg et al., 
2016). The chromatin loop, formed between the enhancer 
and its target promoter, is called an enhancer-promoter loop. 
The enhancer-promoter loop provides the structural basis 
for enhancer function. There are many cofactors that are 
involved in the enhancer-promoter loop, such as CTCF, 
cohesin, BRD4, the Mediator complex, RNA Polymerase II, 
chromatin modifiers, transcription factors, pioneer factors, and 
transcription coactivators. It is important to note that some 
evidence shows that some regulatory elements might have both 
enhancer and promoter functions, and transcription initiation 
and transcriptional enhancement may not be mutually exclusive 
functions for a specific regulatory element (Andersson and 
Sandelin, 2020). 

TAD

Since enhancers can be as much as 1Mb away from 
their interacting promoters (Furlong and Levine, 2018), their 
interaction is based on the 3D organization of the genome 
(Robson et al., 2019; van Steensel and Furlong, 2019). 
Enhancers work in the context of chromatin domains and 
preferentially interact with promoters that are in the same 
topological associating domains (TAD) rather than a nearby 
TAD (Symmons et al., 2014). Disruption of TADs could 
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cause improper enhancer-promoter interactions that result in 
pathogenic phenotypes (Lupiáñez et al., 2015).

Phase separation

Phase separation has been recently discovered to be 
an important part of enhancer function. Phase separation 
is the formation of membraneless organelles inside the cell 
when groups of molecules interact with each other. Phase 
separation plays an important part in enhancer function and 
gene regulation (Sabari et al., 2018; Nair et al., 2019; Zhang 
et al., 2021; Lee et al., 2022). On the other hand, it is also 
shown to be essential in decommissioning of enhancers (Jia 
et al., 2021). It is also discovered to be an important mechanism 
of aberrant chromatin looping and cancer development (Ahn 
et al., 2021; Owen et al., 2021; Kabra and Bushweller, 2022; 
Suzuki and Onimaru, 2022). 

Function of enhancer in cancer 

Enhancer reprogramming in cancer 

There is extensive enhancer reprogramming resulting 
in the expression of essential players in cancer invasive 
progression in various types of cancer (Roe et al., 2017; 
Teng et al., 2020; Yi et al., 2020; Zhou et al., 2020; Ye et al., 
2021; Huang et al., 2022). Some enhancers gained activity 
and drive the expression of oncogenes, while others lose their 
enhancer activity, which may result in the repression of tumor 
suppressor genes. 

cis-acting factors that drive oncogenic enhancer 
reprogramming

Both cis-elements and trans-acting factors can induce 
enhancer reprogramming in cancer progression. Cis-acting 
alterations that drive oncogenic enhancer activity include 
single-nucleotide polymorphisms (SNPs), small insertions 
or deletions (INDELs), and enhancer hijacking. SNPs and 
INDELs represent hereditary cancer predisposition, whereas 
enhancer hijacking is done through somatic chromosomal 
rearrangements. SNPs and INDELS result in the gain or loss 

of enhancer function by creating new or disrupting existing TF 
binding sites (Figure 1). Enhancer hijacking is the utilization 
of otherwise harmless enhancers to drive oncogene expression. 
Large chromosomal rearrangements, including deletions, 
translocations, inversions, and copy number changes, are 
responsible for enhancer hijacking (Figure 2).

Large amounts of SNPs linked to diseases have been 
found to be in noncoding regions and the majority of these 
SNPs are located in enhancer regions (Hindorff et al., 2009; 
Maurano et al., 2012; Hnisz et al., 2013; Weinhold et al., 2014; 
Nasser et al., 2021). The SNP rs2168101 within the SE of the 
neuroblastoma oncogene LMO1 influences neuroblastoma 
susceptibility through differential GATA TF binding and 
regulation of LMO1 expression (Oldridge et al., 2015). 
INDELs acquired upstream of the TAL1 oncogene introduce 
de novo binding motifs for the TF MYB, which creates a SE 
and drives TAL1 overexpression in primary patient T-cell 
acute lymphoblastic leukemia (T-ALL) (Mansour et al., 2014). 

Chromosomal translocation causing the repositioning 
of a single enhancer could result in aberrant expression of 
oncogene EVI1 and acute myeloid leukemia (Gröschel et al., 
2014). Structural variants that juxtapose GFI1 (Growth 
Factor Independent 1) family oncogenes proximal to active 
enhancers are discovered to instigate oncogenic activities in 
medulloblastoma (Northcott et al., 2014). Duplication of an 
enhancer region near the androgen receptor (AR) locus has 
been found in advanced prostate cancer that causes therapeutic 
resistance (Takeda et al., 2018). The duplication causes 
enhanced AR expression, which undermines the effectiveness 
of clinical treatment targeting the AR signaling pathway.

trans-acting factors that drive oncogenic enhancer 
reprogramming

Besides cis-elements that define the intrinsic ability of 
an enhancer region to attract TF binding, another important 
factor is the chromatin landscape, which determines whether 
the DNA of a robust enhancer is accessible for TF to bind to 
initiate gene expression. This important aspect of oncogenic 
enhancer reprogramming involves epigenetic modifications of 
the enhancers. A myriad of trans-acting factors play essential 

Figure 1 – SNP and INDELs can disrupt TF binding motifs in existing enhancers or create new binding motifs for new enhancers, which results in 
oncogenic gene expression program.
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roles in enhancer epigenetic modification, such as chromatin 
remodelers, epigenetic modifiers, and pioneer TFs.

Chromatin remodelers maintain or change chromatin 
landscape and DNA accessibility by moving or ejecting 
nucleosomes. Mutations in the SWI/SNF family of chromatin 
remodeler account for about 20% of all human cancers (St 
Pierre and Kadoch, 2017). The ARID1A subunit targets SWI/
SNF complex to enhancers and loss of ARID1A impairs 
the enhancer-mediated transcriptional program of colonic 
epithelium and drives colon cancer in mice (Mathur et al., 
2017). Besides chromatin remodelers that move nucleosomes 
around, the type of histone variant used in nucleosomes is also 
an important regulator of enhancer activity in cancer cells. In 
breast cancer cell lines, H2A.Z occupancy is linked to enhancer 
activation (Brunelle et al., 2015). Other epigenetic modifiers, 
such as DNA methyltransferases (Lu et al., 2016; Yang et al., 
2016), histone methyltransferases, and demethylases (Sze 
and Shilatifard, 2016; Andricovich et al., 2018; Tran et al., 
2020) are also implicated in oncogenic enhancer function 
through modulating local active/repressive DNA and histone 
modifications. 

Pioneer TFs drive chromatin remodeling and opening in 
enhancer regions and facilitate gene activation. It is observed 
that metastatic transition in pancreatic ductal adenocarcinoma 
is accompanied by large-scale enhancer reprogramming. The 
pioneer TF FOXA1 is a driver of enhancer activation in this 
process, which leads to a retrograde developmental transition 
to embryonic foregut endoderm and a more metastatic nature 
in vivo (Roe et al., 2017).

It is important to note that components of the enhancer-
promoter loop, whose formation is an essential step in 
transcription initiation, are also essential trans-acting factors 
in oncogenic enhancer reprogramming. These structural 
components include CTCF (Fiorito et al., 2016), cohesin (Rao 
et al., 2017), BRD4 (Lovén et al., 2013), and Mediator (Lovén 
et al., 2013). BRD4 turns out to be a promising therapeutic 
target for cancer treatment, which will be discussed in more 
detail later in this review.

SE & cancer

Disease-associated SNPs are most frequently found in 
noncoding regions of the genome and the majority of those 
noncoding SNPs are located inside enhancers (Hnisz et al., 
2013). SEs have been implicated in various types of cancer 
such as adenoid cystic carcinoma (Drier et al., 2016), basal-like 
breast cancer (Chen et al., 2019), colon cancer (Göndör, 2020), 
colorectal cancer (Li et al., 2021; Yu et al., 2021), endometrial 
carcinoma (Zhang et al., 2016), follicular lymphoma (Heckman 
et al., 2002), leukemia (Gröschel et al., 2014; Mansour et al., 
2014), lung adenocarcinoma (Zhang et al., 2016), multiple 
myeloma (Delmore et al., 2011; Alvarez-Benayas et al., 
2021; Jia et al., 2022), nasopharyngeal carcinoma (Ke et al., 
2017; Cai et al., 2020), neuroblastoma (Oldridge et al., 2015), 
oesophageal squamous cell carcinoma (Jiang et al., 2017), 
pancreatic cancer (Kim et al., 2021), pleomorphic adenoma 
(Afshari et al., 2020), prostate cancer (Takeda et al., 2018; Xiao 
et al., 2022), primary effusion lymphoma (Wang et al., 2020), 
and rhabdomyosarcoma (Gryder et al., 2020). Known SEs, 
their target genes, and relative SE formation mechanisms are 
summarized in Table 1. SEs are associated with key oncogene 
expressions in many cancer cells. SEs are found near oncogenes 
in cancer cells, whereas in their healthy counterparts, these 
SEs are absent (Tang et al., 2020). Many events could lead 
to SE formation during tumor pathogenesis, including DNA 
amplification (Zhang et al., 2016) and translocation (Drier 
et al., 2016). 

Enhancer and therapy resistance

Therapy resistance is a major issue in anticancer 
treatment, and the underlying molecular mechanisms are not 
completely understood. It is recently discovered that enhancer 
is also an essential factor in cancer therapy resistance (Bao 
et al., 2019; Canella et al., 2022). BRD4 downregulation 
is implicated in SE activity and might constitute a novel 
mechanism for chemoresistance in mixed-lineage leukemia 
(Canella et al., 2022). Global enhancer reprogramming changes 
breast cancer transcriptional programs profoundly to promote 
cellular plasticity and therapy resistance (Bi et al., 2020). It 

Figure 2 – Enhancer hijacking resulting from chromosomal rearrangements can also lead to oncogenic gene expression.
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was shown that oncogenic TFs GATA3 and AP1 regulate 
enhancers that are lost and gained respectively during treatment 
resistance acquisition. GATA3 is responsible for luminal 
lineage-specific gene expression, whereas AP1 regulates cancer 
invasion-related gene programs. The high-order enhancer 
machinery mediated by differential TF-TF and TF-enhancer 
interactions is a mechanism of enhancer reprogramming and 
therapy resistance (Bi et al., 2020).

Application of enhancer reprogramming in 
cancer treatment

Targeting mediators of super-enhancer function

Since it has been observed in cancer cells that enhancers 
are driving oncogenic transcriptional programs, enhancers have 
become a potential pharmacological target for interventions 
of cancer. 

BETi
Recently there has been a lot of research effort to 

explore possibilities to treat cancer with the inhibition of 
bromodomain and extraterminal (BET) proteins (Whyte et al., 
2013). There are four human BET proteins: BRD2, BRD3, 
BRD4, and testes-specific BRDT, out of which the most 
studied is BRD4. BRD4 contains two bromodomains, which 
can bind acetylated lysine on histone tails and transcription 
factors (Yang, 2004), and a C-terminal motif which can interact 
with positive transcription elongation factor b (PTEF-b). By 
binding to acetylated histones, acetylated transcription factors, 
and PTEF-b, BRD4 serves as a scaffold for transcription 
machinery to come together. The interaction between BRD4 
and PTEF-b permits transcription initiation and elongation 
(Itzen et al., 2014). BRD4 is widely distributed along the 

genome and drives the transcription of many cell-lineage-
determining genes in somatic cells and oncogenes in cancer 
(Lovén et al., 2013; Donati et al., 2018). BRD4 is found at 
essentially all active promoters and a significant fraction of 
active enhancers in both normal and transformed cell types 
(Anand et al., 2013).

BET inhibitors (BETi) disrupt BET protein binding 
to acetylated lysine residues of chromatin and suppress the 
transcription of various genes, including oncogenes and 
oncogenic transcription factors. BETi is emerging as one of 
the most promising drugs to treat various types of cancer. 
There are several classes of BETi depending on whether they 
bind the BD of BET proteins noncovalently, bivalently, or if 
they also target BET proteins for degradation (Kulikowski 
et al., 2021). Noncovalent BETi has the largest number of 
currently available BETi, they can bind bromodomains of BET 
proteins noncovalently and compete with acetylated peptides, 
thus displacing BET proteins from acetylated chromatin 
(Filippakopoulos et al., 2010; Nicodeme et al., 2010). JQ1, 
IBET-762, IBET-151, OTX015, and ZEN-3694 all belong to 
this type, and they have shown antitumor activity in both cancer 
cell lines and murine cancer models (Dawson et al., 2011; 
Delmore et al., 2011; Boi et al., 2015; Baldan et al., 2019). 

Although it is still not clear how BET confers cancer-
specific susceptibility, BETi is effective in reducing the 
transcription of several oncogenes (Delmore et al., 2011; Lovén 
et al., 2013; Fowler et al., 2014) and is potentially effective in 
treating various types of cancers including pancreatic ductal 
adenocarcinoma, leukemia, ovarian cancer (Yokoyama et al., 
2016) and mature B-cell lymphoma (Dawson et al., 2011; Sahai 
et al., 2014; Boi et al., 2015; Mazur et al., 2015; Garcia et al., 
2016). It is worth mentioning that besides cancer, BETi has 
also shown promising therapeutic benefits in cardiovascular 

Table 1 – Known SEs and their target genes in various cancers.

SE formation mechanism Target gene Type of cancer

translocation MYB Adenoid cystic carcinoma

translocation EVI1 Acute myeloid leukemia

N/A KLF5 Basal-like breast cancer

N/A MYC Colon cancer

N/A IL-20RA,PHF19,TBC1D16 Colorectal cancer

focal amplification MYC Endometrial carcinoma

translocation Bcl-2 Follicular lymphoma

aberrant TF binding TAL1 Leukemia

focal amplification MYC Lung adenocarcinoma

translocation MYC,CCND2, HJURP Multiple myeloma

N/A ΔNP63α,ETV6 Nasopharyngeal carcinoma

SNPs in SE LMO1 Neuroblastoma

N/A PAK4,RUNX1,DNAJB1,SREBF2 Oesophageal squamous cell carcinoma

N/A EVI1 Pancreatic cancer

translocation PLAG1,HMGA2 Pleomorphic adenoma

focal amplification AR,FOXA1,MYC Prostate cancer

N/A MYC, IRF4,MCL1,CCND2,MDM2 Primay effusion lymphoma

translocation PAX3-FOXO1 rhabdomyosarcoma
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(atherosclerosis (Tsujikawa et al., 2019) and heart failure 
(Anand et al., 2013; Duan et al., 2017)), autoimmune (juvenile 
idiopathic arthritis (Klein, 2018)) and metabolic diseases 
(obesity (Goupille et al., 2016; Duan et al., 2020)). 

The molecular mechanisms of how BETis exert 
their anti-cancer function are not completely understood. 
Theoretically, inhibition of BRD4 would not only interfere 
with its oncogene targets but also other housekeeping genes 
essential for maintaining cell identity. It was hypothesized 
that BETi impacts the transcription of SE-associated genes 
more effectively than that of typical enhancers bound by 
BRD4 (Lovén et al., 2013). This “off-target” effect might be 
exacerbated with higher doses, which highlights the importance 
of discovering effective biomarkers to help visualize drug 
maximum activity and supervising dose control. 

Treatment-associated toxicity, drug resistance, and lack 
of predictive biomarkers have limited BETi’s progression in 
clinical trials (Sarnik et al., 2021). Future studies defining the 
mechanism of BETi activity, finding predictive biomarkers to 
predict sensitivity to BETi, and identifying potent combinational 
drugs would help prevent toxicities and facilitate its clinical 
success as anti-cancer agents (Shorstova et al., 2021).

CDK7 inhibitors 
Cyclin-dependent kinase 7 (CDK7) drives cell cycle 

progression through the phosphorylation of cell cycle CDKs. 
CDK7 also phosphorylates RNA polymerase II which 
permits transcription at active genes. CDK7 is upregulated 
in various types of cancers including estrogen receptor-
positive breast cancer (Patel et al., 2016), gastric cancer 
(Wang et al., 2016), triple-negative breast cancer(Li et al., 
2017), ovarian cancer(Zhang et al., 2017) and oral squamous 
cell carcinoma(Jiang et al., 2019). CDK7 inhibitors are 
emerging as promising cancer therapeutic targets. Their anti-
tumor effect is mediated through both cell cycle arrest and 
inhibition of oncogenic transcriptional programs. Examples 
of CDK7 inhibitors include covalent inhibitors such as THZ1 
(Kwiatkowski et al., 2014), THZ2 (Zhang et al., 2020), and 
SY-1365 (Hu et al., 2019) and noncovalent inhibitors such as 
BS-181 (Ali et al., 2009) and LDC4297 (Kelso et al., 2014).

CDK7 inhibition is most effective in suppressing SE-
linked oncogenic transcription compared with other genes 
without SE association (Chipumuro et al., 2014; Eliades 
et al., 2018; Cao et al., 2019). SE is loaded with PolII, co-
activators, Mediator complex, and transcription factors. And 
it is shown that SE-associated genes are particularly sensitive 
to small perturbations in CDK7 function and PolII-mediated 
transcription (Kwiatkowski et al., 2014). Treatments with 
covalent inhibitors inhibit downstream phophorylation of 
Pol II (Hu et al., 2019). CDK7 inhibitors also exert their 
anti-cancer function by reducing levels of SE-associated 
oncogenic TFs (Hu et al., 2019). CDK7 inhibition leads to 
reduced recruitment of oncogenic TFs and the repression of 
associated oncogene expression (Yuan et al., 2022).

Due to its essential role in cell cycle progression, 
inhibition of CDK7 causes cell cycle arrest (Ali et al., 2009; 
Chipumuro et al., 2014; Kelso et al., 2014; Choi et al., 2019; 
Olson et al., 2019). The extent and timing of cell cycle arrest 
vary among different cancer types: LDC4297 causes G1 arrest 

in A549 lung cancer cells, but in HCT116 colon cancer cells 
only causes G2/M delay after extended incubation(Kelso 
et al., 2014). 

Genome editing to target enhancer 

Another way to modify SE function in cancer is based 
on CRISPR/Cas9 gene editing system. The mutated form of 
transcription factor RUNX1 is associated with poorer outcomes 
in acute myeloid leukemia (AML). It is shown that CRISPR/
Cas9 mediated knocking out of RUNX1 SE epicenter (a 24kb 
enhancer region inside the 170kb SE) results in repression 
of RUNX1 and higher apoptosis of AML cells (Mill et al., 
2019). In a subset of T-cell acute lymphoblastic leukemia 
(T-ALL) cases, there are indels in a conserved noncoding 
region that create an SE upstream of the TAL1 oncogene 
through introducing MYB transcription factor binding motifs. 
CRISPR/Cas9 experiments to cut out the mutated site resulted 
in the collapse of the SE and abrogation of TAL1 expression 
(Mansour et al., 2014).

A few clinical trials have been completed or are ongoing 
that leverage NHEJ-mediated genetic disruption of BCL11A 
enhancer. Another way to modify enhancers for therapeutic 
purposes without introducing double-strand breaks is to 
base edit. CRISPR/Cas9 system and a cytidine deaminase 
enzyme could be fused together to mediate cytidine to uridine 
conversion and subsequently C to T substitution at the target 
site (Komor et al., 2016; Gehrke et al., 2018). A single 
therapeutic base edit of the BCL11A enhancer in patient-
derived human hematopoietic stem and progenitor cells 
(HSPCs) prevents sickling and globin chain imbalance in 
their erythroid progeny (Zeng et al., 2020).

Future directions
The function of enhancers in tumorigenesis has been 

the target of intensive research efforts for some years. It 
is foreseeable that more types of cancer would be found 
to be related to enhancer reprogramming. Identification of 
major enhancers, including SEs associated with different 
types of cancer and subgroups, would pave the way for 
finding more potential targets for treatment. Targeting both 
cis and trans factors in enhancer function has been utilized 
in cancer therapy through genome editing and anti-cancer 
agents (BETi and CDK7i), although the molecular mechanisms 
are not completely understood. There are issues associated 
with these agents’ progression in clinical trials. Defining 
mechanisms of activity and finding suitable biomarkers would 
aid their successful translation in cancer therapy. It is shown 
that enhancers also play important roles in cancer therapy 
resistance recently, and research on the molecular mechanism 
of enhancer function would enable more strategies to resolve 
therapy resistance.
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