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Abstract

The freshwater/brackish amphipod Quadrivisio lutzi inhabits coastal lagoons, highly unstable environments subject 
to sudden inflow of marine water. Our aim was to evaluate how the genetic composition varies in these populations. 
Brazilian populations were compared by 16S rRNA and COI gene sequences. The genetic structure of four Rio de 
Janeiro amphipod populations was evaluated during the period of 2011-2019 by COI. Rio de Janeiro population was 
compared with Alagoas and São Paulo populations, which was genetically distinct, at species level (16S, d > 7%; 
COI, d >14%). The genetic structure in Rio de Janeiro showed the Imboassica subpopulation as the most divergent 
(Imboassica & Carapebus, FST = 0.238), followed by Lagamar population (Lagamar & Carapebus, FST = 0.049). 
The geographic distance and urbanization around these lagoons explain the degree of genetic isolation of these 
amphipod subpopulations. Paulista and Carapebus populations were not structured. Temporal variation in haplotype 
number and frequency were evident in both populations that were evaluated (Carapebus and Imboassica). Changes 
in salinity and water volume variation at these lagoons may be responsible for the observed changes in genetic 
composition, which may be the results of genetic drift effects over temporally fluctuating size subpopulations, without 
loss of genetic diversity.
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Introduction
Complex coastal lagoon systems are observed along 

the Brazilian coast (Esteves, 1998). At the north of the State 
of Rio de Janeiro (RJ), a lacunar coastal system was formed 
in the Campos basin during the Holocene (~5,000 BPY) by 
sea transgression and regression events (Esteves, 2011a). 
Most of these lagoons are within the National Park Restinga 
do Jurubatiba (PARNA Jurubatiba). The PARNA Jurubatiba 
represents a diverse ecosystem of eighteen coastal lagoons 
with different physicochemical properties (Enrich-Prast et al., 
2004; Silva and Molisani, 2019). Coastal lagoons are highly 
unstable environments due to local variations in precipitation, 
evaporation (Kjerfve, 1994) and the intrusion of marine water 
due to the frequent rupture of sand barriers, which challenges 
the survival of most local freshwater species (Esteves, 1998; 
Camara et al., 2018; Santi et al., 2020).

Salinity is an important environmental parameter 
for many invertebrate species; for example, it determined 
the spatial structure of mussels (Blot et al., 1989) and the 

distribution of stenohaline amphipods (Zaabar et al., 2015). 
The amphipod Quadrivisio lutzi (Shoemaker, 1933) inhabits 
some of the coastal lagoons of the north of the State of 
Rio de Janeiro, and within the PARNA Jurubatiba. This 
amphipod species shows persistent populations in Carapebus 
and Imboassica lagoons, which has been attributed to the high 
reproductive potential (Medeiros and Weber, 2016). Brazilian 
records of Q. lutzi include the north of the State of Alagoas 
(Schellemberg, 1938) and the state of São Paulo (Leite et al., 
1980; Wakabara et al., 1991). The type locality of the species is 
Georgetown, British Guiana, where it was originally described 
in the genus Pseudoceradocus (Shoemaker, 1933). It has 
also been registered for the Gulf of Mexico and Venezuela 
(Escobar-Briones et al., 2002; Martín et al., 2002; Capelo et al., 
2004; Ortíz et al., 2007); and for Aruba and Bonaire islands 
(Stephensen, 1933), at which localities it was described as 
Q. occidentalis, a synonym of Q. lutzi. All records so far of 
Q. lutzi are from coastal environments, from brackish estuarine 
to freshwater habitats (Stephensen, 1933; Leite et al., 1980; 
Ortíz et al., 2007).

Vertebrate and invertebrate species inhabiting coastal 
lagoons have been genetically studied, showing mostly high 
levels of haplotype diversity and endemism, which gives 
these ecosystems high ecological and genetic importance 
(Vergara-Chen et al., 2010a,b; Mejri et al., 2011; Vasileiadou 
et al., 2016; Seixas et al., 2018).
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Changes in population abundance has been observed 
in the amphipod Q. lutzi after sudden changes in salinity. 
Although the amphipod population has been shown to recover 
in a few months, no genetic study is so far done on how its 
genetic composition is affected by unstable environments. 
Therefore, the aim of this study was to evaluate changes in 
genetic composition and diversity along time at different 
coastal lagoons situated at the north of the State of Rio de 
Janeiro, Brazil.

Material and Methods

Amphipod sampling

Quadrivisio lutzi amphipods were collected by hand 
from macrophyte roots, from algae or under vegetal debris 
at shallow waters in four coastal lagoons in the state of Rio 
de Janeiro and in two river/lagoon outlets from the states of 
Alagoas and São Paulo (Figure 1). Coordinates and salinity 
were obtained at each location (Table 1). Amphipods were 
then fixed in 92.8% ethanol and stored in 1.5 mL microtubes.

DNA extraction, amplification, and sequencing

Whole amphipods were homogenized individually with 
sterilized glass sticks‚ and then DNA extraction was performed 
using Phenol/Chloroform/Proteinase-K (Sambrook et al., 
1989) or Chelex-100 (Sigma) protocols (Hoelzel, 1998) with 
modifications. For Chelex extraction, each amphipod was 
homogenized in 75 µL lysis buffer (0.2 mM Tris-HCl, 0.02 mM 
EDTA, pH 8.0). Then‚ 75 µL Chelex 12% solution and 30 µL 
Proteinase K (10 mg/mL) were added, mixed with a vortex 
mixer‚ and incubated overnight at 55 ºC.

Amplifications of the cytochrome c oxidase, subunit I 
(COI), and 16S rRNA (16S) mitochondrial genes were performed 
by polymerase chain reaction (PCR) using universal primers 
and primers designed specifically for Q. lutzi (Table 2). PCR 
reactions (25 µL) were performed with 1–10 µL of extracted 
DNA or dilutions in double distilled water (1:2, 1:5, 1:10, 1:30, 
1:50, 1:100); 1x Buffer; 3 mM MgCl2; 0.12% Triton-X-100;  
0.24 mM dNTPs mix; 0.4 mM of each primer; 2 U of GoTaq® 
DNA polymerase (Promega, Madison, WI, USA). PCR reactions 
were submitted in a Mastercycler gradient thermocycler 
(Eppendorf, Hamburg, Germany) to the following cycles: 1 
cycle at 94 ºC for 4 min; 36 cycles for 1 min at each of the 
following temperatures: 94 ºC, 48 ºC –59 ºC (COI) and 52 ºC– 
57 ºC (16S) and 72 ºC; and one final cycle at 72 ºC for 10 min. 
All PCR products were purified and sequenced by Macrogen 
Inc., Korea, using the automated Sanger dideoxide method.

Data analysis

Sequences were edited with ChromasPro (McCarty, 
1998) and Geneious Prime software (Geneious 11.0.14.1, 
2022). Alignments were done using CLUSTAL W (Higgins 
et al., 1994) implemented in MEGA11 software (Tamura 
et al., 2021). Translation of COI sequences was done by 
aligning with Daphnia pulex (Accession No. NC000844) and 
Parhyale hawaensis (Accession No. NC039402) COI gene, 
using the Invertebrate Mitochondrial Code, for identifying the 
position of the amplified fragment in the gene and to recognize 
synonymous and non-synonymous mutations. Sequences 
obtained for Rio de Janeiro populations were submitted to the 
Nucleotide GenBank database (16S, OQ361834-OQ361842; 
COI, OQ401341-OQ401385).

Figure 1 – Sites where the amphipod Quadrivisio lutzi was collected.
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Table 1 – Sampled locations along the Brazilian coast of the amphipod Quadrivisio lutzi.

Locality Coordinates Collection date Salinity
(ppt)

Number of amphipods

16S COI

State of Alagoas

Roteiro lagoon, Barra de São Miguel 9º50’6”S; 
35º55’19.2”W

August 27, 2021 0.2 1 4

December 19, 2021 0.2 1 1

State of Rio de Janeiro

Lagamar outlet, Campos dos Goytacazes 22º3’35.1”S; 
41º5’00.7”W April 24, 2019 6.7 7 28

Paulista lagoon, Quissamã* 22°14’2.5”S; 
41º32’40.4”W

April 1, 2014 0.6 10 23

August 8, 2015 0.5 4 5

Carapebus lagoon, Carapebus* 22°14’11.9”S; 
41º35’28.8”W

October 21, 2011 0.3 0 39

November 1, 2013 0.6 0 4

November 1, 2014 8.3 6 1

August 11, 2015 9.3 9 28

April 13, 2016 3.9 0 7

April 24, 2019 4.5 9 41

Imboassica lagoon, Macaé 22º24’42.3”S; 
41º49’48.5”W

March 7, 2016 0.3 3 36

July 2, 2018 0.5 3 19

State of São Paulo

Escuro River, Ubatuba 23º29’27”S; 
45º05’50”W

December 19, 2020 2.1 2 0

February 12, 2022 0.6-3.4 2 0

*Situated within the PARNA Jurubatiba.

Table 2 – Primers used for the amplification by PCR of mitochondrial genes (COI and 16S) of the amphipod Quadrivisio lutzi.

Target gene Primer sequence (5’-3’) Expected size (bp) Reference

COI

LCO1490: TAAACTTCAGGGTGACCAAAAAATCA
710 Folmer et al. (1994)

HCO2198: GGTCAACAAATCATAAAGATATTGG

QCOI-R1: TAGGTGCTGGAATAAAATAGGG 685

Weber, L.I. unpublishedQCOI-F1: ACACTCTACCTTATTACCGGAT
655

QCOI-R1: TAGGTGCTGGAATAAAATAGGG

QCOI-F3: CGNATAGARCTTTTAGTCCC
485

Present study
QCOI-R3: AGRGAGAGTAGAAGAAGTGT

QCOI-F4: TGRGCAGGACTYCTRGGTAGATC
545

QCOI-R5: ATRGCCCCTGCTAAKACRGG

16S

16sar: CGCCTGTTTATCAAAAACAT
515 Palumbi et al. (2002)

16sbr: CCGGTCTGAACTCAGATCACGT

Q16s-F2: CGTACATAGTACCTGCCCAGTG
445 Present study

Q16s-R3: GGATGAACAATCCCACTCTC

The genetic divergence between Rio de Janeiro 
population and the amphipod populations from the states of 
Alagoas and São Paulo were obtained by Kimura 2-parameter 
model (d; Kimura, 1980) for the 16S and COI genes, using 
MEGA 11 software. Trees were constructed based on 
maximum likelihood (ML) and Bayesian inference (BI) at 
the 16S, COI and concatenated data sets, using evolutionary 
models determined by jModelTest 2.1 (Darriba et al., 2012) 
under the Akaike criterium (GTR+G model and HKY+I+G, 
respectively). Three outgroups were included in the analysis 
for tree rooting: for 16S, Elasmopus nkjaf (Accession No. 
LC215808, LC215809), Maeridae; Quadrimaera pacifica 
(Accession No. AB432980), Maeridae; and Gammarus 

pulex (Accession No. AJ269626), Gammaridae. For COI: 
E. nkjaf (Accession No. LC215812, LC215813); Melita nitida 
(Accession No. MH826277, MH826279), Melitidae; and G. 
pulex (Accession No. MN400977). COI trees were performed 
only for Alagoas and Rio de Janeiro populations, because it 
was not possible to obtain more amphipods from Ubatuba, São 
Paulo, although sampling efforts were made. A heuristic search 
of the ML tree was performed using Garli 2 software (Zwickl, 
2006) with 1,000 replicates and 1,000 bootstrap resampling 
for tree branch support. The BI analysis was performed using 
Markov chain Monte Carlo algorithms with four simultaneous 
chains for 10,000,000 generations with standard deviation of 
Split frequencies is below 0.01 using MrBayes 3.2 software 
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(Ronquist et al., 2012) and the optimization criterion of the 
maximum posterior probability. The quality of the Bayesian 
sampling was evaluated by Tracer v1.7.1 software (Rambaut 
et al., 2018) using the burn-in value applied with MrBayes 
to obtain the mean posterior probability of the consensus 
tree and the ESS values. Branch support of the BI tree was 
represented by the posterior probability of the clades obtained 
using MrBayes software. Broad estimations of times since 
divergence between pairs of lineages were calculated using 
the conventional rate of mitochondrial nucleotide substitution 
of 2 % per mya, using t= 1/2d/µ (Brown et al., 1979).

The genetic structure and temporal variation of the 
amphipod population of the north of the state of Rio de Janeiro 
(Rio de Janeiro population) was evaluated using COI gene. 
A TCS network (Clement et al., 2002) was performed using 
PopArt software (Leigh and Bryant, 2015) for amphipod 
haplotypes from four lagoons (Lagamar, Paulista, Carapebus 
and Imboassica; Figure 1), showing haplotype frequencies. 
Nucleotide diversity and the pairwise population structure 
parameter, FST, were obtained by Arlequin (Excoffier and 
Lischer, 2010). The genetic divergence of the populations was 
evaluated by the Kimura 2-parameter model using MEGA 
11 software. Haplotype diversity and the neutrality tests of 
Tajima (1989) and Fu (1997) were obtained using DnaSP 
v6 software (Rozas et al., 2017) for each population/year 
compared. Genetic changes through time were evaluated 
for the two largest amphipod populations (Carapebus and 
Imboassica) with evidence of bar opening events and strong 
salinity changes.

Rainfall data were obtained from Instituto Nacional de 
Meteorologia (INMET) from the daily registrations of the 
automatic station A608 at Macaé, state of Rio de Janeiro, 
Brazil. The sum of rainfall at each month between 2011 and 
2019 was calculated.

Results

Seven haplotypes for 16S were obtained from 48 
sequences with a length of 425 bp. For COI, 22 haplotypes 
of 236 sequences with a length of 588 bp were obtained.

Divergence of amphipod populations along  
the Brazilian coast

The degrees of divergence among the Brazilian populations 
of Q. lutzi are shown in Figure 2. Populations at different states 
show independent branches with high bootstrap support and 
Bayesian posterior probability (Figure 2a). Genetic distances 
among them, confirm that Rio de Janeiro population is highly 
divergent from Alagoas (16S, d = 0.0795 ± 0.0003) and to São 
Paulo (16S, d = 0.0879 ± 0.0007) populations. Alagoas and São 
Paulo were the most divergent (16S, d = 0.0969) populations. 
The high divergence observed between Rio de Janeiro and 
Alagoas population was confirmed with COI gene sequences 
(Figure 2b) which showed high distance (d = 0.1472).

Population structure of the amphipod Q. lutzi at the 
north of the State of Rio de Janeiro (Rio de Janeiro 
population)

Four coastal lagoons were found with large numbers of 
amphipods (Lagamar, Paulista, Carapebus and Imboassica). 
Other lagoons from which a few amphipods were collected in 
previous sampling events, but in which they were no longer 
found (Maria Menina, Ubatuba, Preta and Garças), were not 
included in the analysis. Pairwise genetic distance, FST and 
diversity parameters for the four studied populations are 
shown in Table 3. The mean genetic distance among the four 
populations was d = 0.0009 ± 0.0002. Imboassica showed a 
significantly high FST from all other populations (0.163-0.238), 
showing that Rio de Janeiro population is structured. Paulista 
amphipod population did not show significant differences from 
Lagamar and Carapebus; and Lagamar showed significant, 
but low level of structuring with Carapebus (Table 3).

A total of 22 haplotypes with a total of 24 segregating 
sites of which 10 were parsimony informative, were found 
at Rio de Janeiro population. The most frequent haplotype 
(H1) was represented at all subpopulations (Figure 3). Each 
subpopulation (Lagamar, Carapebus-Paulista and Imboassica) 
had haplotypes found nowhere else. All diversity parameters 
showed Imboassica as the most diverse subpopulation, 
followed by Carapebus. (Table 3). Time since divergence 

Figure 2 – Brazilian populations of Quadrivisio. Bayesian inference trees. A) based on 16S sequences, showing the divergence between Rio de Janeiro, 
Alagoas and São Paulo populations. B) based on COI sequences, showing the divergence between Rio de Janeiro and Alagoas populations. Numbers (in 
blue) bootstrap branch support; (in red) posterior probability from Bayesian inference.
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*Include all years of collections. (NH) Number of haplotypes found at each lagoon; (HD) haplotype diversity; (ND) nucleotype diversity.

Table 3 – Genetic structure of Rio de Janeiro population of Quadrivisio lutzi. Pairwise Kimura 2-parameter distance (above the diagonal), FST values 
(below the diagonal) and diversity parameters of amphipod populations from different lagoons, based on COI sequence analysis. Significant values (p 
< 0.05) are shown in bold.

Population (N) Lagamar Paulista Carapebus Imboassica
Diversity Parameters

NH HD ND

Lagamar (28) *** 0.00207 0.00198 0.00394 6 0.439 0.212 ± 0.154

Paulista* (28) 0.036 *** 0.00175 0.00345 3 0.315 0.185 ± 0.140

Carapebus* (108) 0.049 0.000 *** 0.00343 9 0.545 0.166 ± 0.126

Imboassica* (55) 0.231 0.163 0.238 *** 10 0.705 0.376 ± 0.234

Figure 3 – Rio de Janeiro population of Quadrivisio lutzi. Network of COI haplotypes found in different lagoons. Haplotype frequencies are relative 
to circle size.

of Imboassica subpopulation was estimated at 86,000 years 
ago and divergence between Lagamar and Carapebus was 
estimated around 50,000 years ago.

Genetic changes along time in the Rio de Janeiro 
population of Q. lutzi

Temporal changes were observed in Carapebus and 
Imboassica subpopulations (Table 4). The population 

structure parameter, FST, showed that Imboassica amphipod 
subpopulation increased its divergence from Lagamar and 
Carapebus-Paulista subpopulations from 2016 to 2018; and 
Carapebus diverged significantly from Lagamar and Paulista 
in 2019, while no such differences were show previous years 
(2011 and 2015; Table 4). 

Diversity parameters (haplotype and nucleotype 
diversity) also changed during time in Carapebus and 
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Table 4 – Temporal genetic changes in Rio de Janeiro population of Quadrivisio lutzi. Pairwise Kimura 2-parameter distance (above the diagonal), 
FST values (below the diagonal) and diversity parameters of amphipod populations from different lagoons and years, based on COI sequence analysis. 
Significant values (p < 0.05) are shown in bold. In yellow, comparisons from the same or following year.

Population 
and Year (N)

Lagamar 
2019

Paulista 
2014/15

Carapebus 
2011

Carapebus 
2015

Carapebus 
2019

Imboassica 
2016

Imboassica 
2018

Diversity parameters

NH HD ND

Lagamar 
2019 (28) *** 0.002 0.002 0.002 0.003 0.003 0.020 6 0.439 0.2115± 

0.1536

Paulista 
2014/15 (28) 0.036 *** 0.001 0.001 0.002 0.003 0.019 3 0.315 0.1849± 

0.1395

Carapebus 
2011 (39) 0.027 0.014 *** 0.001 0.002 0.003 0.019 2 0.157 0.0991 ± 

0.0907

Carapebus 
2015 (28) 0.009 0.024 0.000 *** 0.002 0.003 0.020 4 0.221 0.097 ± 

0.0904

Carapebus 
2019 (41) 0.190 0.114 0.250 0.220 *** 0.003 0.019 6 0.645 0.2024 ± 

0.1471

Imboassica 
2016 (36) 0.160 0.102 0.208 0.198 0.120 *** 0.019 7 0.571 0.3466 ± 

0.2215

Imboassica 
2018 (19) 0.474 0.418 0.583 0.566 0.361 0.150 *** 7 0.792 0.3543± 

0.2339

(NH) Number of haplotypes found at each lagoon; (HD) haplotype diversity and (ND) nucleotype diversity.

Figure 4 – Changes in COI haplotype frequencies (circles) between 2011 and 2019 in the amphipod Quadrivisio lutzi at two localities (Carapebus and 
Imboassica lagoons) are shown over rainfall variation (INMET). Most common haplotypes (H1, H2 and H3) are indicated within the circle and other 
haplotypes are represented by different colors. Sandbar breaks are represented by red arrows at the localities of Carapebus (c) and Imboassica (i); and 
blue and purple arrows indicate sampling events at Carapebus and Imboassica, respectively. The number under sampling events indicates the salinity 
at the time of collection.

Imboassica subpopulations, increasing in 2018/2019 
compared to 2015/2016 (Table 4). In more recent years 
(2018/2019) a dramatic change was observed in the most 
common allele (H1) from 2011-2016, turning H2 and H3, 
the most common alleles in Carapebus and Imboassica, 
respectively. In 2015, the Carapebus amphipod population 
showed an increase of low frequency haplotypes compared 
to 2011; and in 2019, low-frequency haplotypes declined 

(Figure 4; Table 5). In Imboassica, low-frequency haplotypes 
of 2016 increased their frequencies in 2018 (Figure 4; 
Table 5). The neutrality tests were non-significant for most 
populations at the different years; only Lagamar (Tajima’s 
D = -2.1039, p < 0.05; Fu’s Fs = -1.097, p < 0.05) and 
Carapebus subpopulation of the year 2015 (Tajima’s D = 
-2.2295, p < 0.01; and Fu’s Fs = -3.562, p < 0.02) showed 
deviation from neutrality.
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Table 5 – Temporal changes in haplotype frequency in populations of Quadrivisio lutzi from Carapebus and Imboassica lagoons.

Haplotypes

Population and Year (N)

Carapebus lagoon Imboassica lagoon

2011 (39) 2015 (28) 2019 (41) 2016 (36) 2018 (19)

H1 0.820 0.741 0.317 0.697 0.157

H2 0 0 0.512 0 0

H3 0 0 0 0 0.474

H4 0.103 0.074 0.024 0 0

H5 0 0.037 0.049 0 0

H6 0 0 0 0.152 0.157

H7 0.077 0.037 0.049 0 0

H9 0 0 0.049 0 0

H11 0 0 0 0.030 0.053

H12 0 0 0 0.061 0

H15 0 0.037 0 0 0

H16 0 0.037 0 0 0

H17 0 0 0 0 0.053

H19 0 0.037 0 0 0

H25 0 0 0 0 0.053

H30 0 0 0 0.030 0

H31 0 0 0 0.030 0

H32 0 0 0 0 0.053

Discussion

Divergence of amphipod populations along  
the Brazilian coast

Along the Brazilian coast, three distinct populations 
(Alagoas, Rio de Janeiro and São Paulo) with high levels of 
divergence, a strong indication of the presence of more than 
one species in Brazil for the genus Quadrivisio. The levels 
of divergence (16S, > 7 %; COI, > 14%) found between 
them are higher than those found at 16S locus for conspecific 
crustacean populations (in crabs, 1.3%, Avise et al., 1994; 
copepods, 0.3-2.6%, Bucklin et al., 1995; amphipods: 1-3.9%, 
Jażdżewska and Mamos, 2019). Interspecific distances at 16S 
locus have been reported for crustaceans within the range of 4.4 
to 25.7% (Machado et al., 1993; Bucklin et al., 1995; France 
and Kocher, 1996). The high level of divergence at COI gene 
found between Alagoas and Rio de Janeiro population (> 14%) 
also support the multispecific status of the genus Quadrivisio. 
COI gene has great potential to complement traditional 
taxonomy in the identification of crustacean species (Costa 
et al., 2007). In accordance to Costa et al. (2009), studying 
15 species of the genus Gammarus and three pair of species 
of other amphipod genera, intraspecific range of distances 
was 0-4.3%, while the interspecific range was 5.2-34.2%. 
Corroborating that the degree of divergence of the Brazilian 
populations of Quadrivisio from different states is within the 
range of interspecific populations, it is a strong indicative of 
the presence of cryptic or semi-cryptic species of this genus 
in the surveyed area. The morphological description and 
identification of diagnostic characters will be necessary for 
the delimitation and recognition of these potential species.

Genetic structure of the Rio de Janeiro amphipod 
subpopulations

Taxonomic reviews and catalogs of Brazilian Amphipoda 
have already shown the sparse and rare distribution of 
Quadrivisio (Wakabara et al., 1991; Serejo and Siqueira, 
2018). Sampling efforts in coastal lagoons of the states of 
Espírito Santo, Santa Catarina and Rio Grande do Sul have 
not reported the species (unpublished). Despite the sampling 
effort of the present study in the known locations of the 
Quadrivisio distribution in Brazil, the abundance was very 
low in environments permanently open to the sea. The low 
representation of the species may be reflecting historical 
events on its distribution and environmental requirements 
of the species.

The population of Q. lutzi in the state of Rio de Janeiro is 
abundant and it was found to be highly structured, as expected 
from fragmented environments (Astolfi et al., 2005). The 
amphipod population is divided into three subpopulations 
(Lagamar, Carapebus-Paulista and Imboassica). Levels of 
differentiation among them may be explained by the degree 
of isolation due to the geographic distance that separate them 
and by the progressive urbanization around them, in the cases 
of Imboassica and Lagamar. Connectivity in the past may 
have moderated differentiation between them, in the cases 
of Lagamar and Carapebus-Paulista subpopulations; and 
present day connectivity may prevent further differentiation 
between amphipods from different lagoons, in the cases of 
Carapebus and Paulista.

In the past, a large floodable area, called the “Pantanal 
Fluminense”, interconnected Lagoa Feia to all the PARNA 
Jurubatiba lagoons (Lamego, 1946), which includes Paulista 
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and Carapebus. Lagamar lagoon is a remnant of the Lagoa 
Feia drainage canal (Soffiati, 2013), that became isolated 
from the PARNA Jurubatiba with the progression of drainage 
activities and urbanization (Silva and Molisani, 2019). Past 
connectivity may explain the present low values of subdivision 
between Lagamar and Carapebus-Paulista subpopulations. 
Although genetic differences were lower in previous years 
between Lagamar and Carapebus-Paulista subpopulations, 
the increased urbanization around Lagamar will prevent any 
future gene flow between them, therefore it is expected that 
genetic differences will increase with time.

Paulista and Carapebus lagoons show variable 
connectivity, determined by an inner arm of Carapebus 
lagoon, which may increase its extent in rainy periods allowing 
gene flow (Esteves, 2011b) or became interrupted on severe 
dry seasons.

Imboassica was the most genetically differentiated 
subpopulation. According to Esteves (2011a), the Imboassica 
River micro basin was formed by sea transgression and 
regression events during the Holocene (~5,000 years ago). 
At the time, the river flow was small and the sand deposition 
by winds and currents led to the formation of the Imboassica 
lagoon orthogonal to the coastline (Silva and Molisani, 2019). 
About 3,000 years ago‚ the first sandbar was formed (paleobar), 
semi-isolating the lagoon from the sea. A probable rupture of 
the paleobar happened 1,000 years ago, advancing the lagoon 
to its current position (Panosso et al., 1998). Imboassica is 
situated at ~29 km from Carapebus lagoon. Although Cabiúnas 
lagoon is closer to Imboassica (~18 km) than Carapebus 
lagoon, physicochemical conditions at Cabiúnas and Comprida 
lagoons are not suitable for amphipod survival. Imboassica 
lagoon has also been affected by urbanization and farming, 
decreasing its extent, and causing urban waste contamination 
at some points (Barreto, 2009).

The genetic divergence of Imboassica from the other Rio 
de Janeiro subpopulations suggests that divergence may have 
started around 86.000 years ago, dating back to the beginning 
of the fourth transgressive-regressive cycle at the Atlantic 
South American coast (Carreño et al., 1999). This estimation 
is much older than suggested by Esteves (2011a), of ~5,000 
years ago of the Imboassica lagoon emergence. Repetitive 
drastic changes in lagoon water volumes and salinities may 
have increased divergence among subpopulations submitted to 
different regimens of stochastic and directional selective events. 
Therefore, in populations submitted to unstable environments 
with temporal variation of effective population size, any 
estimation of date from divergence should be interpreted 
carefully (Whitlock, 1992; Pisa et al., 2019). Nevertheless, 
genetic divergence among Rio de Janeiro subpopulations 
suggests that amphipod colonization in the region occurred 
before the formation of the contemporary lagoons.

The long-term isolation of Imboassica lagoon may 
explains the presence of exclusive haplotypes, which is 
characteristic of coastal lagoons (Pérez-Ruzafa et al., 2019). 
Micro-invertebrates transport at different life cycle stages 
may occur by waterbirds (Silva et al., 2021), but may not be 
frequent, having minimal effect on gene flow among large 
isolated amphipod populations.

Temporal genetic variation in Carapebus  
and Imboassica subpopulations

Strong variation in genetic composition was observed 
at both localities (Carapebus and Imboassica) in the years of 
2018/2019 compared to previous years. The genetic changes 
were evident on the increased diversity of haplotypes and the 
change of the most common haplotype at each subpopulation. 
Deviation from neutrality indicates population expansion 
at Carapebus in 2015‚ which predict large population size. 
Population growth determine the increase of amphipods 
with rare haplotypes, therefore retaining diversity (Pavesi 
and Matthaeis, 2009; Vergara-Chen et al., 2010b; Pavesi 
et al., 2011). At Carapebus lagoon, optimal environmental 
conditions were observed (Salinity of 0.3-0.6 ppt; large rain 
volumes) from 2011 until middle of 2013 (Figure 4), when 
large volumes of amphipods were easily obtained. Large 
reproductive potential (Medeiros and Weber, 2016) may have 
contributed to population increase at these years. In late 2013 
the sandbar was artificially opened twice. Although there was 
a drastic salinity increase after the sandbar breaks in 2013, 
amphipod population appears to have been unaffected. In 
March of 2014, amphipods were not easily found close to 
the sandbar of Carapebus lagoon, where salinity was > 13 
ppt; however, amphipods were found in the innermost part 
of Carapebus lagoon and in Paulista lagoon, where water 
remained at 0.5-0.6 ppt of salinity. The artificial sandbar 
opening in the end of 2013 was followed by a severe dry 
period that lasted from the beginning of 2014 to the end of 
2015 (Figure 4). Although, no genetic differentiation were 
found at Carapebus in August of 2015, when amphipods were 
abundant at 9.3 ppt of salinity. Therefore, the dry period did 
not affect the amphipod population. What happened in the 
Carapebus amphipod population between August 2015 and 
April 2019 is discussed below.

The Imboassica lagoon also showed a drastic change 
in genetic composition from March 2016 to July 2018. 
Imboassica lagoon suffered a strong drop of water level and 
a sudden increase of salinity in November 2016. Imboassica 
is smaller (3.3 km2) than Carapebus lagoon (6.5 km2; Panosso 
et al., 1998) and it is surrounded by urbanized areas that 
motivate frequent artificial sand bar openings to prevent the 
flooding of houses around the lagoon. In addition, since 1980 
the Imboassica lagoon gradually deteriorated, reaching in 
2015 the hypertrophic condition (Silva and Molisani, 2019). 
Therefore, amphipod population is restricted to the southern 
anterior margin of the Imboassica lagoon, without routes or 
other areas to escape under conditions of salinity changes.

In both lagoons, the change of the most frequent 
haplotype may have happened by a drastic temporarily 
reduction in population size, followed by a sweepstakes 
chance event that led to the increase in frequency of new 
dominant haplotypes mainly due to the effect of genetic drift. 
At Imboassica, certainly the sudden lagoon volume reduction 
and salinity increase may explain the severe reduction in 
population size. However, for Carapebus subpopulation, may 
not be the case. The environmental instability caused by the 
sudden intrusion of seawater in Carapebus and Imboassica 
lagoons has driven changes in fish assemblage (Camara et al., 
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2018). Euryhaline amphipod predators that deal well with 
salinity variations may have increased their population size 
intensifying amphipod predation and therefore reducing their 
population size. On the other hand, osmoregulation of the 
amphipod Q. lutzi suggest that osmotic stress may be related 
to population decline in Carapebus (unpublished data). During 
2014 and most of 2015, surviving and newborn amphipods 
had to live in areas close to the sea under a salinity range of 
8-13 ppt, on which they are able to osmoconform (unpublished 
data). At the end of 2015, salinity dropped, and amphipods 
needed to activate the hyper-regulation system, which would 
have demanded time and energy, causing probably population 
size reduction in the amphipod at Carapebus lagoon.

We do not understand exactly how and when different 
mechanisms of osmoregulation are activated in the new 
born amphipods or in adult amphipods, which remained 
most of their life in a specific level of salinity. Therefore, 
we cannot rule out completely the possibility that selection 
may have taken place when population size was still elevated, 
acting against amphipods not well adapted to a specific new 
salinity regimen.

The instability in coastal lagoons due to strong water 
volume and salinity variations has driven changes in the 
genetic composition of Q. lutzi by genetic drift acting over a 
fluctuating population size, which causes changes in haplotype 
frequencies, without diversity loss.

The high diversity and endemism observed in coastal 
lagoons (Vergara-Chen et al., 2010b; Milana et al., 2012; Pérez-
Ruzafa et al., 2019) and the ability of species to survive in such 
unstable environmental conditions (González-Wangüemert 
et al., 2006; Pérez-Ruzafa et al., 2019), reinforce the need 
of protection of these peculiar ecosystems.
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