The downy mildew, caused by *Pseudoperonospora cubensis*, is an important melon disease in Northeast Brazil. Considering the lack of standard methods for its assessment, a diagrammatic scale was developed with 2, 4, 8, 16, 32, 64, 82, and 96% of affected leaf area. The scale was then checked for its accuracy, precision, and reproducibility in estimating downy mildew severity. The diagrammatic scale was validated by eight disease raters; using 50 leaves with different severity levels, previously measured using the software Assess®. Two evaluations were performed on the same set of leaves, but in a different sequence order, by the same raters, within a 15-day interval. The accuracy and precision of each rater was determined by simple linear regression between the actual and the estimated severity. The scale provided good levels of precision (means of 87.5%) and excellent levels of precision (means of 94%), with absolute errors concentrated around 10%. Raters showed great repeatability (means of 94%) and reproducibility (≥90% in 90.3% of cases) of estimates. Therefore, we could conclude that the diagrammatic scale presented here was suitable for evaluating downy mildew severity in melon.

Keywords: *Cucumis melo*, *Pseudoperonospora cubensis*, foliar disease, epidemiology, phytometery.

RESUMO

Escala diagramática para avaliação da severidade do mólindo do meloeiro

O mólindo, causado por *Pseudoperonospora cubensis*, é uma importante doença do meloeiro no nordeste brasileiro. Devido à inexistência de métodos padronizados para quantificação desta doença, foi elaborada uma escala diagramática com os níveis 2; 4; 8; 16; 32; 64; 82 e 96% de área foliar lesionada, avaliando-se a acurácia, a precisão e a reproduzibilidade das estimativas de severidade da doença. A escala diagramática foi validada por oito avaliadores que utilizaram 50 folhas com sintomas da doença em diferentes níveis de severidade, mensuradas previamente pelo programa Assess®. Foram realizadas duas avaliações em um intervalo de 15 dias, em que sequências diferentes das mesmas folhas foram estimadas visualmente pelos mesmos avaliadores. A acurácia e a precisão de cada avaliador foram determinadas por regressão linear simples entre a severidade real e a estimada. A escala diagramática proporcionou bons níveis de acurácia (média de 87,5%) e excelentes níveis de precisão (média de 94%), com os erros absolutos concentrando-se na faixa de 10%. Os avaliadores apresentaram elevada repetibilidade (média de 94%) e reproduzibilidade (≥90% em 90,3% dos casos) das estimativas. Portanto, a escala proposta mostrou-se adequada para avaliação da severidade do mólindo do meloeiro.

Palavras-chave: *Cucumis melo*, *Pseudoperonospora cubensis*, doença foliar, epidemiologia, fitometria.

(Received for publication in 18 de abril de 2008; accepted in February 27, 2009)
reproducible estimates (Campbell & Madden, 1990), the use of diagrammatic scales reduces subjectivity in severity estimates and is a good aid to the disease rater, once these scales are very functional.

Due to the lack of downy mildew quantification methods in melon that went through rigorous validation procedures, this work aimed at both developing a diagrammatic scale for assessing disease severity, and also analyzing the quality of the estimates it brought about.

MATERIAL AND METHODS

Development of the diagrammatic scale

To develop the diagrammatic scale, 100 melon leaves (cultivar AF-682), with distinct levels of mildew severity, were collected in an experimental field in Rio Largo County, State of Alagoas. Leaf images (200 dpi) were produced using the software Assess® (The American Phytopathological Society, St. Paul, MN, USA). The percent of disease affected area was determined in each image and used as the disease severity level. A diagrammatic scale was then developed, with eight disease severity levels, based on the Weber-Fechner visual accuracy law (Horsfall & Cowling, 1978) and on the highest severity level observed in the collected leaves. In the scale, we tried to reproduce patterns, shapes, and the lesion scattering standard, as observed in the sampled leaves.

Validation of the diagrammatic scale

To validate the diagrammatic scale, we used colored photocopies of 50 melon leaves, with different levels of mildew severity. Eight agronomists (A to H), without experience on assessing diseases, were asked to estimate severity using the scale. To evaluate the reproducibility of the estimates, 15 days after the first evaluation, a new sequence of the same leaves was assessed by the same group, again using the scale.

Accuracy and precision of each rater were determined through simple linear regression, with the actual disease severity electronically obtained out of the images as the independent variable and the estimates of severity of each rater as the dependent variable. The accuracy of each rater and of the group of raters was determined applying the t test to the intercept of the linear regression (a), to prove the hypothesis Ho: a = 0; and to the line angular coefficient (b), to prove the hypothesis Ho: b = 1, both at 5% probability. The precision of the estimates was expressed by the regression determination coefficient (R^2), by the variance of absolute errors (difference between the estimate and actual severity), and by the repeatability of the estimates, which, in its turn, was determined by the regression between the second and first disease evaluation over the same sample. Reproducibility was determined based on the R^2 values of linear regressions involving severity estimates from different raters, sorted in pairs, over the same sample (Nutter Jr. & Schultz, 1995). Regression analyses were carried out using the software Microsoft® Office Excel 2003 (Microsoft Corporation, 2003).

RESULTS AND DISCUSSION

The highest severity value observed in the 100 harvested melon leaves was 96%. Therefore, the diagrammatic scale developed to assess disease severity consisted of the levels 2; 4; 8; 16; 32; 64; 82, and 96% of leaf affected area (Figure 1). For the severity levels from 32% above, symptom representation included rotted tissue and coalesced spots. Spot coalescence is characteristic of the melon downy mildew, and may progress to extensive areas of leaf rotted tissue (Rega & Carrijo, 2000; Tavares, 2002).

In the diagrammatic scale validation, the intercept of 37.5 and 50% of the raters in respectively the first and second evaluations significantly (p≤0.01) differed from zero for the regression lines between the actual and the estimated severity. Most of these raters underestimated the actual severity (Table 1). The values of the line angular coefficient for 87.5% of the raters, in both evaluations, did not differed significantly from 1 (p≤0.01) (Table 1), with no systematic deviations. Each 1% increment in the melon downy mildew severity assessed electronically corresponded to an increment of 0.85 and 0.87% in the severity estimated by raters, respectively in the first and second evaluation, attesting the trend for undervaluing. The tendency demonstrated by raters to underestimate severity levels of the melon downy mildew resembles what was observed on the validation of diagrammatic scales of the cassava brown leaf spot (Michereff et al., 1998), yam leaf blight (Michereff et al., 2000), Cercospora leaf spot in lettuce (Gomes et al., 2004), and grapevine bacterial canker (Nascimento et al., 2005).
Table 1. Accuracy and precision of estimates of downy mildew severity in melon, represented by the intercept (a), line angular coefficient (b) and determination coefficients (R²) of simple linear regression, for the disease evaluation carried out by eight raters, using the diagrammatic scale (acurácia e precisão das estimativas da severidade do mildío do meloeiro, representadas pelo intercepto (a), coeficiente angular da reta (b) e coeficiente de determinação (R²) de equações de regressão linear simples nas avaliações efetuadas por oito avaliadores com o auxílio da escala diagramática). Maceió, UFAL, 2006.

<table>
<thead>
<tr>
<th>Rater</th>
<th>1st evaluation</th>
<th>2nd evaluation</th>
<th>(a)</th>
<th>(b)</th>
<th>(R²)</th>
<th>(a)</th>
<th>(b)</th>
<th>(R²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.48</td>
<td>0.92</td>
<td>0.97</td>
<td>-0.67</td>
<td>0.93</td>
<td>0.98</td>
<td>-0.67</td>
<td>0.93</td>
</tr>
<tr>
<td>B</td>
<td>-1.98</td>
<td>0.87</td>
<td>0.98</td>
<td>-1.96</td>
<td>0.92</td>
<td>0.98</td>
<td>-1.96</td>
<td>0.92</td>
</tr>
<tr>
<td>C</td>
<td>-1.63</td>
<td>0.81</td>
<td>0.96</td>
<td>-1.63</td>
<td>0.86</td>
<td>0.98</td>
<td>-1.63</td>
<td>0.86</td>
</tr>
<tr>
<td>D</td>
<td>-3.39 *</td>
<td>0.76 *</td>
<td>0.95</td>
<td>-3.93 *</td>
<td>0.83</td>
<td>0.97</td>
<td>-3.93 *</td>
<td>0.83</td>
</tr>
<tr>
<td>E</td>
<td>0.03</td>
<td>0.83</td>
<td>0.90</td>
<td>4.84</td>
<td>0.75 *</td>
<td>0.93</td>
<td>4.84</td>
<td>0.75 *</td>
</tr>
<tr>
<td>F</td>
<td>-0.15</td>
<td>0.83</td>
<td>0.92</td>
<td>5.09</td>
<td>0.94</td>
<td>0.92</td>
<td>5.09</td>
<td>0.94</td>
</tr>
<tr>
<td>G</td>
<td>-4.41 *</td>
<td>0.87</td>
<td>0.95</td>
<td>-3.42 *</td>
<td>0.80</td>
<td>0.95</td>
<td>-3.42 *</td>
<td>0.80</td>
</tr>
<tr>
<td>H</td>
<td>-6.68 *</td>
<td>0.88</td>
<td>0.88</td>
<td>-6.63 *</td>
<td>0.89</td>
<td>0.91</td>
<td>-6.63 *</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Average: -0.85 0.94 -0.87 0.95

* The star identifies cases in which the nullity hypothesis (\(a = 0 \) or \(b = 1 \)) was rejected by the \(t \) test, \(p \leq 0.01 \) (o asterisco representa as situações em que a hipótese de nulidade (\(a = 0 \) ou \(b = 1 \)) foi rejeitada pelo teste \(t \), \(p \leq 0.01 \)).

In the precision analysis, the visual severity estimates in the first evaluation explained from 88 to 98% of the variation (\(R² \)) observed in the electronically disease assessment, scoring an average of 94%. In the second evaluation, visual estimates explained from 91 to 98% of the electronically assessed variation, with an average of 95% (Table 1). Most of the raters improved estimate precision from the first to second evaluation, which might indicate that as raters get better acquainted with the disease or are trained for disease assessment, estimate accuracy and precision are expected to improve (Michereff et al., 2000; Tovar-Soto et al., 2002). The precision of the visual estimates of downy mildew severity in melon with the aid of the scale was similar to those observed in recent studies for validation of diagrammatic scales (Barbosa et al., 2006; Godoy et al., 2006), getting fairly close to an ideal agreement, which denotes high precision (Kranz, 1988; Nutter Jr. & Schultz, 1995). Most of the raters reached excellent estimate repeatability when using the scale: in average, 94% of the variation in the first evaluation was explained by the second evaluation.

The absolute errors (residue) in both evaluations, when the diagrammatic scale was used, were concentrated around 10%, which, in addition to being fairly acceptable in evaluations of diagrammatic scales, can be reduced by training the raters (Nutter Jr. & Schultz, 1995; Nutter Jr. et al., 2006). The reproducibility of estimates of disease severity was higher than 90% in 89.3% of the cases in the first evaluation, and in 91.1% of the cases in the second evaluation (Table 2). Such a high reproducibility level is good evidence that the diagrammatic scale can be placed into practice to compare different experiments, carried out by different raters.

The difference among raters in the assessment of the melon downy mildew severity confirms the observations by Nutter Jr. & Schultz (1995) about the human distinct ability to discriminate disease levels. The quality of the disease estimate is influenced not only by psychological stimulus and response, but also by factors such as the complexity of the sample, lesion size and shape, color and number of lesions in a sample (Kranz, 1988), and rater fatigue and difficulty to keep the focus on the task (Shokes et al., 1987).

To put forward a proposal of a standard system to guide severity evaluation for a given disease is a considerable responsibility. If the system is defective, the costs related to its use may be heavier than the benefits it granted (Nutter Jr. & Schultz, 1995; Leite & Amorim, 2002). Nevertheless, standardization should be pursued. The use of a standard system for disease evaluation is the most effective way to allow the confrontation of results from different groups, institutions, and places (Bergamin Filho & Amorim, 1996).

The diagrammatic scale presented here to assess downy mildew severity in melon was very straightforward. At the same time, it was effective in providing a quick disease estimate, with reasonable accuracy and excellent precision and reproducibility. Therefore, we consider the diagrammatic scale to assess downy mildew severity in melon presented here to be a valuable tool for field surveys, epidemiological studies, and comparison among disease control methods.

ACKNOWLEDGEMENTS

Authors thank the raters who took part in the scale validation. Sami J. Michereff holds a Research Grant from CNPq (The National Council for Scientific and Technological Development).
REFERENCES

