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Biomechanical and morphological 
changes produced by ionizing 
radiation on bone tissue surrounding 
dental implant

Objective: This study analyzed the effect of ionizing radiation on 
bone microarchitecture and biomechanical properties in the bone tissue 
surrounding a dental implant. Methodology: Twenty rabbits received three 
dental morse taper junction implants: one in the left tibia and two in the 
right tibia. The animals were randomized into two groups: the nonirradiated 
group (control group) and the irradiated group, which received 30 Gy in a 
single dose 2 weeks after the implant procedure. Four weeks after the implant 
procedure, the animals were sacrificed, and the implant/bone specimens 
were used for each experiment. The specimens (n=10) of the right tibia were 
examined by microcomputed tomography to measure the cortical volume 
(CtV, mm3), cortical thickness (CtTh, mm) and porosity (CtPo, %). The other 
specimens (n=10) were examined by dynamic indentation to measure the 
elastic modulus (E, GPa) and Vickers hardness (VHN, N/mm2) in the bone. 
The specimens of the left tibia (n=10) were subjected to pull-out tests to 
calculate the failure load (N), displacement (mm) up to the failure point and 
interface stiffness (N/mm). In the irradiated group, two measurements were 
performed: close, at 1 mm surrounding the implant surface, and distant, at 
2.5 mm from the external limit of the first measurement. Data were analyzed 
using one-way ANOVA, Tukey’s test and Student’s t-test (α=0.05). Results: 
The irradiated bone closer to the implant surface had lower elastic modulus 
(E), Vickers hardness (VHN), Ct.Th, and Ct.V values and a higher Ct.Po value 
than the bone distant to the implant (P<0.04). The irradiated bone that was 
distant from the implant surface had lower E, VHN, and Ct.Th values and a 
higher Ct.Po value than the nonirradiated bone (P<0.04). The nonirradiated 
bone had higher failure loads, displacements and stiffness values than the 
irradiated bone (P<0.02). Conclusion: Ionizing radiation in dental implants 
resulted in negative effects on the microarchitecture and biomechanical 
properties of bone tissue, mainly near the surface of the implant.
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Introduction

The life expectancy of the world population has 

increased, and consequently, the need for dental 

implants as part of oral rehabilitation did as well.1,2 The 

incidence of head and neck cancer has also increased, 

and radiotherapy may be indicated for patients with 

previously installed dental implants. Thus, clinicians 

are faced with the question of whether to remove or 

maintain osseointegrated implants before radiotherapy 

for head and neck cancer treatment. Several studies 

have been performed to evaluate implant survival in 

previously irradiated areas.2-5 However, few studies 

have evaluated the presence of osseointegrated 

implants in irradiated bone areas.1,4,6,7

The presence of titanium implants in irradiated 

areas can create a deleterious effect on bone tissue. 

Backscatter high-energy photons and electrons at 

the tissue-metal interface may also compromise 

bone repair.5,8-10 In addition, ionizing radiation 

induces persistent hypoxia in small blood vessels and 

decreases the activity and quantity of osteoblasts and 

osteocytes,2,5,10 which can increase the occurrence of 

osteoradionecrosis.5,9

These effects have hindered efforts to determine 

the best moment to install implants after irradiation.2,4 

During head and neck tumour ablative surgery, 

dental implants can be installed in areas that need 

to be treated using radiotherapy.1,4,6,7 The stability 

of titanium implants in the osseointegration process 

is compromised by radiation in a dose-dependent 

manner.11,12 Additionally, there is no consensus 

regarding the impact of ionizing irradiation on the 

functionality or survival of the implant installed in 

the irradiation field. Notably, the effect of ionizing 

radiation is dose dependent.11,12 A single dose of 30 

Gy has been demonstrated to be sufficient to cause 

a negative influence on bone/implant integrity in a 

rabbit study model.11,12

Radiotherapy is one of the most common treatments 

for head and neck cancer patients,4,13 and ionizing 

radiation can reduce bone healing capacity through 

the progressive fibrosis of blood vessels and soft 

tissue,14 loss of osteoblast function15 and damage to 

the collagen arrangement.16 These effects can also 

negatively influence bone/implant integration.5,10 

Studies have been carried out to evaluate implant 

survival in previously irradiated areas,2,3,5 but there are 

limited data on the effect of backscattered radiation 

on the osseointegration process of implants placed 

before ionizing radiation.1,4,5,7,8 Although backscattering 

effects around the implant can be a problem for 

individuals with implant rehabilitation,1,4,10 the risk of 

radionecrosis is not significantly higher than that for 

postimplantation radiotherapy.1,4,10 Therefore, the aim 

of this study was to evaluate the effects of ionizing 

radiation on the rabbit bone surrounding an implant 

using microcomputed tomography (micro-CT) and 

biomechanical analysis.

Methodology

The present preclinical in vivo study is reported 

according to the ARRIVE guidelines regarding all 

relevant items. The animal experimental protocol 

was approved by the Bioethics Committee for Animal 

Experimentation (CEUA #093/12) at the Universidade 

Federal de Uberlândia. This study followed the 

normative guidelines of the National Council for 

Animal Control and Experimentation (CONCEA), a 

subsidiary of the Ministry of Science, Technology and 

Innovation (MCTI; Law 11.794, 08/19/2008), Brazil. 

Twenty New Zealand white male rabbits that weighed 

between 3.0 and 3.5 kg and were 6 months of age were 

included in the study. All animals were acclimatized 

for 2 weeks before the experimental procedures. 

The animals were randomly and individually housed 

in standard cages containing bedding and nesting 

material at the ambient temperature of 20°C under 

controlled humidity and a 12-hour circadian rhythm. 

The diet consisted of standard laboratory pellets and 

water ad libitum. The animal caretakers were blinded 

to the experimental groups. The animals received 

three implants in their tibias (one in the left tibia and 

two in the right tibia) and were randomized into two 

groups (n=10): a nonirradiated group, in which the 

animals were not subjected to ionizing radiation, and 

an irradiated group, in which the animals received 

external irradiation of both tibias 2 weeks after the 

implant installation surgery.

Surgical procedure
The animals were fasted for twelve hours prior to 

surgery. For sterile preparation of the surgical site, 

the animal legs were shaved, and the tibia areas 

were cleaned with a 0.2% chlorhexidine solution 

(Rioquimica, São José do Rio Preto, SP, Brazil). The 
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animals were anaesthetized through intramuscular 

injection with a combination of 0.25 mg ketamine/

kg body weight (Ketamina Agener®; Agener União 

Ltda., São Paulo, SP, Brazil) and 0.5 mg xylazine/kg 

body weight (Rompum® Bayer S.A. São Paulo, SP, 

Brazil). The anaesthesia was administered with 2% 

lidocaine and 1:100,000 epinephrine (Alphacaine® 

0.5 - 1 ml/site, DFL, Rio de Janeiro, RJ, Brazil) to 

reduce stimulation during surgery and to generate 

vasoconstriction. Incisions of 3 cm in length were 

made in both tibias. The soft tissue and periosteum 

were removed, and a sharp subperiosteal dissection 

exposed the proximal tibia. Grade 4 titanium dental 

implants and a morse taper junction, measuring 3.75 

mm in diameter and 7.0 mm in length (Titamax Acqua 

CM, Neodent®, Curitiba, PR, Brazil), were inserted into 

each animal in the diaphysis region, which primarily 

contains cortical bone. One implant was installed in the 

left tibia and two in the right tibia, at a distance of 10 

mm (Figure 1A) between the implants as measured by 

a periodontal probe. The implants were placed using a 

progressive sequence of drills under constant irrigation 

with 0.9% sodium saline solution according to the 

manufacturer’s instructions. All drilling procedures 

were performed at 1200 rpm, while considering the 

depth parameter based only on the rupture of one 

external cortical bone (Figure 1B). The soft tissues 

were sutured in separate layers using an interrupted 

suture (#5.0 nylon sutures Ethicon®: Johnson & 

Johnson Medical Ltd., Blue Ash, Ohio, United States). 

To prevent infection, daily intramuscular injections of 

cefazolin (Ourofino, São Paulo, SP, Brazil, 250 mg/kg) 

were given for 1 week. To prevent pain, a 0.3 mg/kg 

dose of the anti-inflammatory Meloxicam® (Ourofino) 

was given. Each rabbit was caged individually at room 

temperature and received food and water. After 2 

weeks of surgery, the animals were randomly divided 

into nonirradiated and irradiated groups.

Irradiation protocol
After 2 weeks of implant installation, irradiation 

was performed on the irradiated group. During the 

irradiation sessions, animals in the irradiated group 

were maintained under sedation by intramuscular 

injection with a combination of 1.3 ml ketamine 

(100 mg/kg) and xylazine chlorate (7 mg/kg body 

weight). Both hind legs of each rabbit were subjected 

to irradiation using a single dose of 30 Gy.11,12,17  A 

5-mm bolus was given to ensure full build-up. The tibia 

metaphysis region of the hind leg was the designated 

zone for irradiation. A single dose of radiation was 

delivered with a source–skin distance of 60 cm and a 

field measuring 15x15 cm with a direct electron beam 

of 6 MeV (Varian 600-C® Varian Medical Systems Inc, 

Palo Alto, California, USA). The dose rate was 400 

cGy/min. After irradiation, the veterinarian closely 

monitored the skin, hair, weight, and appetite of the 

rabbits for 2 weeks.

Animal sacrifice and sample preparations 
All animals were sacrificed 4 weeks after implant 

installation. The animals were anaesthetized with 2.5% 

thiopental and sacrificed with an intravenous injection 

of 19% potassium chloride (Ariston Chemical and 

Pharmaceutical Industry Ltda. São Paulo, SP, Brazil). 

The overlying soft tissues were removed, and the tibia 

were stored in plastic tubes containing phosphate-

buffered saline solution and frozen at -20°C before 

testing. The implant installed in the left tibia was used 

for the pull-out test, one implant installed in the right 

Figure 1- Implant installation on the rabbit tibia. A - Two implants installed on the right tibia with dissection of soft tissue and periosteum. 
B - Schematic 3D model of transverse tibia section showing the implant installed in cortical bone
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tibia was used for the micro-CT analysis, and the other 

implant was used for the dynamic indentation test.

Microcomputed tomography (micro-CT) 
analyses

The bone/implant samples (n=10) were scanned 

at an energy of 90 kV and an intensity of 278 mA 

with a resolution of 9 µm pixels using a Cu 0.1 mm 

filter (Skyscan-1272 X-ray microtomography; Bruker, 

Kontich, Belgium). The reconstructed 3D data sets 

were quantified using the CTAn automated image 

analysis system (Bruker). The volume of interest 

(VOI) for cortical analyses was selected around the 

implant and defined as a column from the implant 

axis with a radius of 1.5 mm within cortical bone, 

extending for a total of 200 slices. The implant was 

selected based on its threshold level, and this region 

was circumferentially expanded, creating a 0.55-mm 

zone around the implant. To compare the effect of 

metal on irradiation enhancement in the irradiated 

group, two measurements were performed on the 

same bone volume: close, at 1 mm surrounding the 

implant surface, and distant, at 2.5 mm from the 

external limit of the first measurement. The following 

microarchitecture parameters were analysed in the 

VOI images according to standard procedures:18,19 

cortical volume (CtV, mm3), cortical thickness (CtTh, 

mm) and porosity (CtPo, %).

Dynamic indentation test
The elastic modulus (E, GPa) and Vickers hardness 

(VHN, N/mm2) of the bone samples (n = 10) were 

assessed by using a microhardness dynamic indenter 

(CSM Micro-Hardness Tester; CSM Instruments, 

Peseux, Switzerland). The sample preparation and 

experimental protocol were performed as described 

previously by Soares, et al.20 (2014). The samples 

were embedded in polyester resin (Instrumental 

Instrumentos de Medição Ltda, São Paulo, SP, 

Brazil) using a metallic device (Metalon; Metalon 

Pooled Industries, Nova Iguaçu, RJ, Brazil) (Figure 

2A). Using a Vickers indenter, seven continuous 

indentations were made with a 0.08 mm distance 

between each one (Figure 2B). Two measurements 

were performed on the same sample close and distant 

to the implant, following the measurements made in 

the micro-CT analysis. The indentation was carried 

out with controlled force, whereby the test load was 

increased or decreased at a constant speed ranging 

between 0 and 200 mN in 60-second intervals. The 

maximum force of 200 mN was held for five seconds. 

The load and penetration depth of the indenter were 

continuously measured during load-unload hysteresis. 

Universal hardness was defined as the applied force 

divided by the apparent area of the indentation 

at the maximum force. The measurements were 

expressed in VHN units by applying the conversion 

factor supplied by the manufacturer. The indentation 

modulus was calculated from the slope of the tangent 

of the indentation depth curve at the maximum force, 

which was comparable to the E of the bone structure.

Pull-out test
The tibia/implant sample (n=10) was mounted in 

a customized device during the pull-out tests. The 

device was adjusted to align with the load cell. This 

mechanical test consisted of applying an increasing 

vertical force along the implant axis until the bone-

implant interface was broken. A mechanical testing 

machine (EMIC DL 2000; EMIC, São José dos Pinhais, 

PR, Brazil) fitted with a calibrated load cell of 1000 N 

Figure 2- Dynamic Indentation test. A - Indentation moment in metallic device with the tibia embedded in polyester resin. B - Two 
indentations in a cortical bone close to the implant surface
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was used to perform the pull-out tests.11 The crosshead 

speed range was set to 1.0 mm/min. Data were 

graphed as force versus displacement, and the failure 

load (N), displacement (mm) up to the failure point 

and interface stiffness (N/mm) were also calculated 

from the graph.

Statistical analysis
The CtV, CtTh, Ct.Po, E, VHN, and pull-out data 

were tested for normal distribution (Shapiro-Wilk, 

P>0.05) and equality of variances (Levene’s test), 

followed by parametric statistical tests. One-way 

analysis of variance (ANOVA) was performed for the 

Ct.V, Ct.Th, Ct.Po, E and VHN values. Tukey’s test was 

used for multiple comparisons. Student’s t-test was 

performed for the pull-out data. A post hoc test was 

performed to define the minimum difference in the 

parameters assessed in this study that would have 

been possible to detect by applying a power of 80%. 

All tests employed an α 0.05 significance level, and all 

analyses were carried out with the statistical package 

SigmaPlot version 13.1 (Systat Software Inc., San 

Jose, CA, USA).

Results

Micro-CT analysis – bone microarchitecture
The micro-CT results are shown in Table 1. The 

nonirradiated group had significantly higher Ct.V 

(P<0.022) and lower Ct.Po (P<0.002) values than the 

irradiated group close and distant to the implant. In 

the irradiated group, the Ct.V (P=0.032) and higher 

Ct.Po (P=0.025) values of the bone close to the implant 

were significantly lower than those of the bone distant 

to the implant. However, no significant difference was 

observed between groups in terms of the Ct.Th values 

(P=0.412).

Dynamic indentation test – E and VHN
The dynamic indentation test results are shown in 

Table 2. The bone tissue of the nonirradiated group 

had significantly higher E (P<0.001) and VHN values 

(P=0.001) than the bone tissue of the irradiated group, 

both close and distant to the implant. In the irradiated 

group, the E and VHN values of the bone distant to 

the implant were significantly higher than those of the 

bone close to the implant (P=0.034).

Pull-out test – implant/bone structure stability
The pull-out test results are shown in Table 3. The 

nonirradiated group had significantly higher failure 

loads (P=0.002), higher displacements (P<0.001) 

and higher interface stiffness values (P=0.019) than 

the irradiated group.

Discussion

The results of this study showed that ionizing 

radiation decreases bone mass, compromising the 

biomechanical properties of bone around dental 

Groups Ct.V (mm3) Ct.Th (mm) Ct.Po (%)

Nonirradiated animals group 6.9±0.3A 0.30±0.06A 65.9±1.4A

Irradiated animal  group

Measured distant to the 
implant surface

6.5±0.3B 0.31±0.03A 68.4±1.1B

Measured close to the 
implant surface

6.1±0.3C 0.33±0.03A 71.9±1.7C

Superscript letters represent significant difference within each morphological parameter, defined by Tukey test (P<0.05).

Table 1- Mean and standard deviation values of cortical volume (Ct.V), cortical thickness (Ct.Th), and porosity (Ct.Po) measured by micro-
CT analysis for nonirradiated and irradiated group close and distant from the implant surface

Groups Elastic modulus (GPa) Vickers hardness (N/mm2)

Nonirradiated animals group 20.8±3.2A 115.9±32.5A

Irradiated animals group Measured distant to the implant 
surface

18.3±2.5B 91.5±32.0B

Measured close to the implant 
surface

16.1±2.5C 69.7±27.2C

Superscript letters represent significant difference within each mechanical property, defined by Student’s t-test (P<0.05).

Table 2- Mean and standard deviation values of elastic modulus and Vickers hardness measured by dynamic indentation test for non-
irradiated group and irradiated group close and distant from the implant surface
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implants. Despite the limitations of using animals 

to mimic clinical situations, such studies are still 

essential for the design of future clinical studies that 

aim to validate clinical protocols. These findings may 

help to contribute to the establishment of predictable 

and successful treatment protocols for dental implant 

rehabilitation before radiotherapy in patients with head 

and neck cancer, as consistent information about the 

effect of backscattering radiation from titanium on the 

bone surface is lacking.

The rabbit tibia model used in this study is 

considered valid for evaluating biomechanical 

properties in relation to the osseointegration process 

after implant placement21. This animal possesses 

Havers systems similar to those found in humans22 

and a thrice as fast bone turnover rate, allowing 

small periods of analysis of the osseointegration 

process23. An interval of 4 weeks was used between 

the placement of implants and the sacrifice of the 

animal to simulate a period of early osseointegration in 

humans that provides the basis for current treatment 

protocols.18,24,25 In addition, this study used a single 

dose of 30 Gy in 2 weeks after implant placement, 

aiming to impair bone healing, 12,15 according to a 

previous study by Soares25 (2015). The single dose of 

30 Gy radiation was also used in a rabbit study that 

demonstrated a low volume of newly formed bone 

between the labels, which suggested that the rate of 

bone formation is slow.11,12

The micro-CT results involved three microstructural 

parameters that are complementary and used to qualify 

cortical bone integrity and quality. The decrease in 

bone mass found in the irradiated groups of bone 

tissue both close and distant to the implant may have 

occurred due to the impairment of vascularization and 

osteoblast activity. Some studies have shown that 

ionizing radiation damages vascular endothelial cells, 

followed by occlusion and obliteration of some blood 

vessels, which may reduce the perfusion of osteogenic 

cells, mainly in the area of bone formation.14,26 

Moreover, apoptosis is induced in osteoblasts exposed 

to irradiation, as they have higher radiosensitivity 

than other bone cells.27 Three-dimensional micro-CT 

analysis was used as this modality is recommended 

to quantify the bone matrix and to present results 

that are similar to those found in histomorphometric 

analyses.28 In addition, this study used biomechanical 

tests to determine the degree of bone-implant contact 

stability.

The lower values of failure load, displacement 

and interface stiffness measured in bone tissue close 

and distant to the implant in the irradiated group 

suggest that ionizing radiation damages the organic 

and mineral matrices. It is possible that irradiation 

affects the collagen arrangement, which decreases 

the mineralization process. The results confirmed the 

influence of irradiation on bone/implant integration, 

reducing the failure load, displacement and stiffness. 

When the implant is subjected to the pull-out test, 

the tensile force is transferred to the interface, 

showing that bone contact integrity is compromised 

by irradiation. Since the failure load was reduced, less 

displacement of the implant was necessary to cause 

rupture at the interface. Additionally, the calculated 

stiffness by the pull-out test is indirectly determined 

by the resistance imposed by the bone tissue to 

the implant removal, explaining the lower stiffness 

observed for the irradiated group.

Some studies have shown that irradiation increases 

plastic deformation in bone tissue by releasing free 

radicals via radiolysis of water molecules, degrading 

collagen molecules and restricting fibrillary sliding 

mechanisms,29,30 which affect the proper molecular 

arrangement for the biomineralization process to 

occur.16 In addition, irradiation may affect the activity 

of osteoblasts in terms of normal deposition and 

development of hydroxyapatite crystals from the 

inorganic matrix.29,30 The secondary effect caused by 

ionizing radiation is related to the implant composition, 

and we agree that the implant composition is decisive 

for the bone response. The grade 4 titanium implant 

had more of an effect on bone tissue than the titanium 

implant coated with hydroxyapatite that was subjected 

to ionizing radiation.8 This effect is more sensitive to 

the interface because this area is the highest dose 

enhancement.9,31

Groups Failure load (N) Displacement (mm) Stiffness (N/mm)

Nonirradiated animals group 406.7±51.8A 1.67±0.74A 339.8±89.4A

Irradiated implants group 321.4±89.4B 0.79±0.20B 287.9±64.6B

Superscript letters represent significant difference within each mechanical parameter, defined by Tukey test (P<0.05).

Table 3- Mean and standard deviation values of failure load, displacement up to the failure point and interface stiffness measured by pull-
out test for nonirradiated and irradiated group
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Furthermore, the lower values for E, VHN and 

bone mass volume when close to irradiated implants 

demonstrated that the deleterious effects of irradiation 

were more intensive in the region of bone-implant 

contact. A previous study31 examined the dose 

enhancement from scattered radiation at bone-dental 

implant interfaces and found a 21% maximum increase 

in the dose to alveolar mandibular bone in close 

proximity to the titanium. That study stated that a 

local overdose of 15 to 21% could cause a significant 

increase in the incidence of bone necrosis around 

osseointegrated titanium implants. Friedrich, et al.31 

(2010) also reported that the presence of titanium 

dental implants in the field of irradiation caused 

osteoradionecrosis, corroborating the hypothesis of 

the backscattering effect of secondary electrons.

Our biomechanical findings and micro-CT analysis 

are supported by studies showing that the presence 

of titanium dental implants in the irradiation field 

induces a backscattering effect of secondary electrons, 

increasing the deleterious effects of irradiation on 

bone tissue around the implant.5,15 It has been very 

challenging for dentists to increase the success rate 

of dental implants in irradiated bone areas. Some 

human studies have indicated that exposure of bone 

to an irradiation dose exceeding 50 Gy impairs its 

ability to osseointegrate, increasing the failure risk 

of subsequent rehabilitation with a dental implant.2,5

This study has the same limitations as other studies, 

including that there was no load on the implants and 

that the implants were installed only in cortical bone. 

Most likely, the fatigue process of the loading process 

may intensify this influence. The use of a single dose 

of ionizing radiation in an animal research model can 

also be considered a limitation as the healing process 

can be intensified when the dose is fractionated by a 

systemic response. The results of this study cannot 

be directly extrapolated to clinical practice, but our 

findings may indicate a possible correlation with the 

irradiation response observed in humans.15 In patients 

with head and neck cancer that need to undergo 

radiotherapy, the observation of previously installed 

implants should be an important consideration.7,8 

Given the lack of protocols that aim to address such 

situations, the irradiation field should be limited as 

much as possible to avoid implant areas, and patients 

need to return frequently to the dental office to analyse 

implant stability.

Conclusion

Within the limitations of this in vitro study that 

tested the ionizing radiation over the pre-installed 

implants, the following conclusions can be drawn:

Irradiation decreased the failure load and 

displacement of implant when tested by pull-out test.

Irradiation decreased the mechanical properties, 

expressed by elastic modulus, Vickers hardness and 

stiffness of bone tissue around the implant.

Irradiation decreased the cortical volume and 

increased the porosity of bone around the implant.
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