Selected Topics from Recent NMR Studies of Organolithium Compounds

Harald Günther

University of Siegen, FB 8, OCII
D-57068 Siegen, Germany

After a short introduction to NMR spectroscopy of alkali and alkaline earth metals the review concentrates on NMR investigations of organolithium compounds. The isotopic fingerprint method, which rests on deuterium-induced isotope shifts for 6Li resonances, is introduced and exemplified with applications from the aggregation behavior of cyclopropyllithium systems and mixed aggregate formation between metyllithium and lithium salts. In the following chapter, one- and two-dimensional pulse experiments, both for homo- and heteronuclear spin systems are discussed. Finally, the structural aspects associated with benzyllithium are outlined and the formation of polylithium systems by lithium reduction of biphenylenes is described.

Keywords: NMR, 6Li-NMR, 15N-NMR, isotope shifts, isotopic fingerprints, pulse methods, spin-spin coupling, organolithium compounds, aggregation, benzyllithium structure, π-systems, polylithium systems, reduction

Introduction

The alkaline and alkaline earth metals, a group of elements which comprises the four biologically most important cations (Na$^+$, K$^+$, Ca$^{2+}$, Mg$^{2+}$), provides us with an appreciable number of magnetic nuclei (Table 1). No wonder then, that NMR spectroscopy finds widespread applications, including such diverse topics like ion solvation in solution, investigations of ion binding to biological macromolecules and enzymes, solid state NMR of minerals and metal-doped fullerenes, as well as sodium NMR imaging.

With respect to investigations of structure and dynamics in organometallic chemistry, however, high-resolution NMR spectroscopy of most of these nuclides suffers from large quadrupole moments which lead to severe line broadening. Notable exceptions are beryllium, 9Be, cesium, 133Cs, and in particular the lithium isotopes 6Li and 7Li which can be successfully employed in various one- and two-dimensional NMR experiments. Especially 6Li, which has the smallest quadrupole moment of all stable nuclides and which has been classified ludicrously as an ‘honorary spin-1/2 nucleus’3, is an important tool for the elucidation of structure and dynamics in lithiated carbon, nitrogen, and phosphorus compounds.

A concise and informative review on NMR of alkali and alkaline earth metals was lately given by Akitt2, who also lists the earlier progress reports for this field. Laszlo3 and Lutz5 provided additional articles, as did Drakenberg6 and just recently again Laszlo7. Several extensive progress reports dealing with $^6,^7$Li-NMR have appeared8-13, a fact which underlines the continuous activity in this area.

On the other hand, the biological importance of certain group I and II metals like sodium, magnesium, and calcium has initiated numerous NMR investigations of the respective nuclides in biological systems and results from this field, including accounts on sodium NMR imaging, have been summarized by several authors14-22. In addition, completely
new areas for NMR investigations became accessible with the discovery of alkali anions, the synthesis of alkali and alkaline earth intercalation compounds of fullerenes, and studies on clay minerals used as catalysts in organic synthesis. Two Specialists Periodical Reports summarize regularly the literature on NMR investigations involving alkali and alkaline earth metals.

For high-resolution NMR in organometallic chemistry, especially $^6,^7$Li, but to some extent also 9Be and 133Cs are the nuclides of choice, while NMR of the remaining nuclei in Table 1 is less common for a number of reasons. As already mentioned, line broadening as a result of fast quadrupole relaxation renders the measurement of chemical shifts difficult if not impossible. For the same reason, scalar spin-spin coupling, which forms the basis of many modern NMR experiments, is not resolved or is even absent due to purely ionic bonding or the existence of solvent separated ion pairs. The majority of NMR investigations is thus confined to chemical shift and relaxation studies. In addition, because of effective quadrupolar relaxation, most of the heavier nuclei are not expected to show nuclear Overhauser effects which have proved so important in the structural elucidation of organolithium compounds. Aside from 1H, $^6,^7$Li NOE effects, only for 133Li and other nuclei like 1H, 13C, 15N, 29Si, 31P etc. exists and opens the doors to Alices wonderland of modern one- and two-dimensional NMR. The following account, therefore, deals exclusively with selected topics from recent NMR investigations of lithiated systems, where small linewidths and scalar spin-spin coupling paves the way for experiments which lead to a deeper understanding of structure and bonding.

Structure Determinations Via 2H-induced 6Li-NMR Isotope Shifts

NMR isotope effects are long known, but it was only after the introduction of high-field instrumentation that these parameters, which are often in the ppb region, became generally accessible. They soon were recognized as interesting data in connection with research on structure and bonding. It is thus quite understandable, that from the viewpoint of structural research on organometallic systems $^6,^7$Li-NMR is much more attractive. In addition to 1H, $^6,^7$Li and 1H, 7Li nuclear Overhauser effects, ample spin-spin coupling between $^6,^7$Li and other nuclei like 1H, 13C, 15N, 29Si, 31P etc. exists and opens the doors to Alices wonderland of modern one- and two-dimensional NMR. The following account, therefore, deals exclusively with selected topics from recent NMR investigations of lithiated systems, where small linewidths and scalar spin-spin coupling paves the way for experiments which lead to a deeper understanding of structure and bonding.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Natural abundance (%)</th>
<th>Spin quantum number</th>
<th>v_1 at 9.4 T (1H = 400 MHz)</th>
<th>Quadrupole moment Q (10$^{-28}$ m2)</th>
<th>Receptivity D_1 (13C = 1.00)</th>
<th>Width factor (7Li = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6Li</td>
<td>7.42</td>
<td>1</td>
<td>58.862</td>
<td>-8 x 10$^{-4}$</td>
<td>3.58</td>
<td>2.0 x 103</td>
</tr>
<tr>
<td>7Li</td>
<td>92.58</td>
<td>3/2</td>
<td>155.454</td>
<td>-4.5 x 10$^{-2}$</td>
<td>1540</td>
<td>1.00</td>
</tr>
<tr>
<td>23Na</td>
<td>100.0</td>
<td>3/2</td>
<td>105.805</td>
<td>0.12</td>
<td>525</td>
<td>343</td>
</tr>
<tr>
<td>39K</td>
<td>93.1</td>
<td>3/2</td>
<td>18.666</td>
<td>5.5 x 10$^{-2}$</td>
<td>2.69</td>
<td>1359</td>
</tr>
<tr>
<td>41K</td>
<td>6.88</td>
<td>3/2</td>
<td>10.245</td>
<td>6.7 x 10$^{-2}$</td>
<td>6.0328</td>
<td>-</td>
</tr>
<tr>
<td>85Rb</td>
<td>72.15</td>
<td>5/2</td>
<td>38.620</td>
<td>0.25</td>
<td>43</td>
<td>542000</td>
</tr>
<tr>
<td>87Rb</td>
<td>27.85</td>
<td>3/2</td>
<td>130.885</td>
<td>0.12</td>
<td>277</td>
<td>-</td>
</tr>
<tr>
<td>133Cs</td>
<td>100.0</td>
<td>7/2</td>
<td>52.468</td>
<td>-3 x 10$^{-3}$</td>
<td>269</td>
<td>15</td>
</tr>
<tr>
<td>9Be</td>
<td>100.0</td>
<td>3/2</td>
<td>56.252</td>
<td>5.2 x 10$^{-2}$</td>
<td>78.8</td>
<td>3.6</td>
</tr>
<tr>
<td>25Mg</td>
<td>10.13</td>
<td>5/2</td>
<td>24.480</td>
<td>0.22</td>
<td>1.54</td>
<td>284</td>
</tr>
<tr>
<td>43Ca</td>
<td>0.145</td>
<td>7/2</td>
<td>26.912</td>
<td>-5 x 10$^{-2}$</td>
<td>0.0527</td>
<td>59</td>
</tr>
<tr>
<td>87Sr</td>
<td>7.02</td>
<td>9/2</td>
<td>17.344</td>
<td>0.18</td>
<td>1.07</td>
<td>162000</td>
</tr>
<tr>
<td>135Ba</td>
<td>6.59</td>
<td>3/2</td>
<td>39.536</td>
<td>1.83</td>
<td>660000</td>
<td>-</td>
</tr>
<tr>
<td>137Ba</td>
<td>11.32</td>
<td>3/2</td>
<td>44.452</td>
<td>0.28</td>
<td>4.41</td>
<td>1610000</td>
</tr>
</tbody>
</table>

Adapted from Refs. 1 and 2.

small is beautiful
illustrative examples for one-bond effects from the literature are shown in Fig. 1.

The reason for the isotope shift lies in the bond lengths changes associated with the isotopic replacement, which lead to a slightly shorter bond for the compounds with the heavier isotope (Fig. 2). This is due to the anharmonicity of the X-Y bond potential and the lower zero-point vibrational energy of the \(^m\)X-Y as compared to the \(^n\)X-Y bond. This results in a shielding effect for Y but also for nuclei several bonds away. However, in the case of isotope shifts over more than one bond, the opposite sign (low-field or high-frequency shift) is often observed\(^{42}\).

In organic compounds, deuterium-induced shifts of \(^{13}\)C resonances have been studied extensively and correlations with carbon hybridization and substitution\(^{43}\), hyperconjugation\(^{44}\), dihedral angles\(^{45}\), and spin-spin coupling constants\(^{46}\) were found. Apart from these aspects which are related to physical organic chemistry, isotope shifts have also been used in a straightforward way as assignment aids in \(^{13}\)C-NMR\(^{47,49}\). \(^2\)H/\(^1\)H isotope shifts decrease with the number of bonds between deuterium and the \(^{13}\)C nucleus which is observed and are usually too small to be detected if more than four bonds are involved. However, in unsaturated compounds effects over as much as twelve bonds have been reported\(^{50,51}\).

The isotopic fingerprint method which we introduced as a tool to study aggregation of organolithium compounds\(^{52}\) uses for the first time \(^2\)H-induced isotope shifts of \(^6\)Li-NMR signals. The idea was, that, for example in the case of a tetramer like methyl lithium in diethylether, a 1:1 mixture of deuteriated and non-deuteriated material, CD\(_3\)\(^6\)Li and CH\(_3\)\(^6\)Li, should yield different environments for the \(^6\)Li nuclei. As shown in diagrams 1a - 1d, the direct surrounding of a particular \(^6\)Li nucleus might consist of three, two, one, or no CH\(_3\) group, leading to the environments \(^hhh\), \(^hhd\), \(^hdd\), and \(^ddd\). Considering the statistical distribution of the deuteriated ligand, a quadruplet with an intensity ratio of 1:3:3:1 was expected and indeed observed (Fig. 3). Here, the isotope shift amounts to roughly 16 ppb.

![Figure 1](image1.png)

Figure 1. a) Deuterium-induced isotope shifts in the 134.2 MHz \(^{119}\)Sn-NMR spectrum of tinhydrides SnH\(_3\)\(_n\)D\(_n\) (n \(\leq\) 3) at -50 °C in liquid ammonia; the isotope shifts \(\Delta\delta\) per deuterium are \(-3.1\) ppm (adapted from Wasylhen, R.E.; Burford, L. *Can. J. Chem*, 1987, 65, 2707); b) oxygen-induced isotope shifts in the 47.6 MHz \(^{15}\)N-NMR spectrum of \(^1\)O labeled sodium [\(^{1}\)N]nitrite (95% \(^{15}\)N, 77% \(^18\)O) in 50 % D\(_2\)O (adapted from Risley, J.M.; Van Etten, R.L. *NMR - Basic Principles and Progress*, 1990, 22, 83).

![Figure 2](image2.png)

Figure 2. Schematic representation of an X-Y bond potential for two isotopes of X; \(^6\)X = light isotope; \(^m\)X = heavy isotope.
per CD₃ group and is of positive sign on the δ-scale (low-field or high-frequency shift).

By a straightforward extension of this reasoning, a doublet is expected for a monomer and a triplet for a dimer (Fig. 4). Thus, clusters of different size are characterized by isotopic fingerprints, where the intensity ratio within the multiplets follows Pascal’s triangle. In general, the number of observed lines is n + 1 and the intensity distribution is given by the expression (a + b)^n, where n is the number of organic ligands around each lithium cation and a and b are the mole fractions of ²H-labeled and non-labeled material, respectively.

The argument developed above takes into account only next neighbors and corresponds to the local environment approximation introduced by Brown.инфекционное значение. Indeed, ²H-induced isotope shifts from deuterons residing in organic ligands not directly attached to the ⁶Li nucleus under study are mostly too small to be detected and have so far been observed in simple alkyl lithium compounds only in a few cases (see below). The remote neighbor thus normally does not effect the lithium resonance as long as we deal with aggregates which are static on the NMR time scale. Considering the magnitude of the shift effect (16 ppb or 0.9 Hz at 58.88 MHz for ⁶Li on a 400 MHz ¹H instrument), the lifetime of the particular cluster should be in the order of 2 s or more. If the lifetime falls short of this limit, intra-aggregate exchange brings also the remote neighbors into play and for a tetramer, again with equal numbers of deuteriated and non-deuteriated ligands, five different environments exist: hhhh, hhhd, hhdd, hddd, and dddd. Now a quintuplet results, as observed for the fluxional phenyllithium tetramer (Fig. 5a).

Finally, with the inset of inter-aggregate exchange, line broadening starts and a singlet is found in the fast exchange limit (Fig. 5).

An advantage of the isotopic fingerprint method as compared to other NMR techniques which are used to study aggregation phenomena and which rely on the measurement of ¹³C spectra (chemical shift studies, observation of ¹³C,⁶Li scalar spin-spin coupling) is its high sensitivity due to double isotopic enrichment, which is easily achieved.⁶Li is readily incorporated directly or via lithiation with [⁶Li]butyllithium, while numerous procedures for the deuteration of organic ligands are available. Thus, even aggre-
gates which coexist in low concentration may be detected and characterized.

In order to illustrate the application of the isotopic fingerprint method further, we discuss below recent findings for lithiated cyclopropyl compounds and results of a study on the structure of mixed aggregates between methyl-lithium and lithium salts.

Aggregation behavior of 1-Lithio-trans-2,3-dimethyl-cyclopropane

For a study of cyclopropyllithium compounds we chose the trans-2,3-dimethyl system which was synthesized from the corresponding bromide obtained by tributyltin-hydride reduction of the 1,1-dibromide, which in turn resulted from the addition of dibromocarbene to trans-2-butene. A salt-free sample was prepared via the mercury compound in the same solvent mixture, a 6Li triplet, which characterizes a dimer, is observed at 187 K as the dominating signal (Fig. 7a). Interesting lineshape changes are, however, found at lowering the temperature to 161 K. The structure of the 6Li signal resembles a quadruplet between 170 and 163 K, which is associated with a tetramer. Tetramer formation is, however, rather unlikely considering the relatively modest and steady change in chemical shift which is much better explained by a normal temperature gradient rather than by a change of aggregation state. A 6Li-NMR spectrum run at 73.5 MHz (500 MHz 1H instrument) revealed that two overlapping triplets are present at 161 K which deceived a quadruplet at lower field strength (Fig. 7b). Thus, two dimers are present in a ratio of 1.0 : 0.7, a consequence of the chirality of the monomer which forms diastereomeric dimers of the (R,S); (S,R) and (R,R); (S,S) type, respectively.

From the intensity ratio of the signals one calculates K = 0.48 and ΔG° = 1.1 kJ/mol at 163 K, but it is not known which of the two diastereomers is the more stable one. It is interesting, however, that NOE effects are found between 6Li and H(2) as well as 3-CH3 in these dimers (Fig. 7c) which indicates that their structure, as far as the orientation of the lithium double bridge with respect to the three-mem-

Figure 5. 1H decoupled 58.9 MHz 6Li-NMR spectrum of C6H5Li/C6D5Li (1:1) 0.5M in [D10]diethylether at various temperatures; left experimental, right calculated.
bered rings is concerned, differs from that of the mixed dimer containing LiBr. In the 1H spectrum the signals for the diastereomers are not separated and it is not clear if the NOE effects result from the d,l or the $meso$ compounds or if both are responsible.

Quite a different picture emerged from measurements of the salt-free sample of 2 in diethylether as the sole solvent. The 6Li spectrum now shows three signals at 2.02, 2.08, and 2.22 ppm of comparable intensity (1.15 : 1.23 : 1.00). The isotopic fingerprint method yielded a doublet, a triplet, and a quintuplet which characterizes these signals as belonging to the monomer, the dimer, and a fluxional tetramer (Fig. 8). The coexistence of these three different aggregates is unique and apparently a consequence of comparable energies for solvation of the lithium cation with the solvent and the organic ligand.

Mixed aggregate formation between Methyllithium and Lithium salts

NMR studies of mixed aggregate formation between alkyllithium compounds and lithium salts often suffer from low sensitivity of 13C measurements if the concentration of certain clusters falls below 0.1 M. Here, the isotopic fingerprint method with its high isotopic enrichment can be used to advantage. We investigated methyllithium in the presence of LiI and LiBr, systems studied earlier by Brown58 and Waak59 by 7Li chemical shift measurements.

In the case of the CH$_3$Li/LiI system52, five 6Li resonances were observed in the slow exchange limit at 178 K, four of which give rise to typical fingerprints which characterize the 6Li environment in the different aggregates; the signal at highest field is due to LiI (Fig. 9). The assignments based on signal multiplicity were confirmed by NOE measurements for a non-deuteriated sample, where a constant intensity increase per CH$_3$ neighbor was found. This result also agrees with the observation of four signals in the 1H-NMR spectrum.

From an analysis of the measured intensity distribution and the observed 1H, 6Li NOE effects, the presence of aggregates Li$_4$(CH$_3$)$_3$I$_2$ (8), Li$_4$(CH$_3$)$_3$I (7), Li$_4$(CH$_3$)$_2$I (8), and Li$_4$(CH$_3$)$_2$I$_2$ (9) was derived. Due to facile crystallisation of cluster 8 and LiI, instead of a statistical distribution only a non-equilibrium distribution of the aggregates was observed which did not allow to calculate energy differences on the basis of signal integration.
A similar study of the system CH$_3$Li/LiBr in diethylether yielded the 6Li-NMR spectra shown in Fig. 10a, where the NOE difference experiment (Fig. 10b) identifies those lithium sites which are adjacent to at least one CH$_3$ group. This leaves a total of five signals, centred at three different chemical shift values (0.44, 1.04/1.08, 1.72/1.80 ppm rel. to LiBr).

The measured NOE effects suggested next neighbor environments [CH$_3$BrBr], [CH$_3$CH$_3$Br], and [CH$_3$CH$_3$CH$_3$] for these 6Li resonances and this is borne out by the isotopic fingerprints observed for a sample of composition CH$_3$Li/CD$_3$Li/LiBr (1:1:2) (Fig. 10c): there is a doublet for signal 2, two triplets for signals 3 and 4, and two quadruplets for signals 5 and 6. As in the case of the iodine containing clusters, we can distinguish the 6Li resonances with the environments [LiCH$_3$CH$_3$CH$_3$]CH$_3$ (signal 5) and [LiCH$_3$CH$_3$CH$_3$]X (signal 6) with X = Br in the present case, but compared to the iodine case the chemical shift order for these two aggregates is reversed. Furthermore, we have here different signals for [LiCH$_3$CH$_3$Br]CH$_3$ and [LiCH$_3$CH$_3$Br]Br. As shown by the highly resolved spectrum of the two triplets around 1.06 ppm, there is a small doublet splitting of 0.24 Hz for each line of the triplet corresponding to [LiCH$_3$CH$_3$Br]CH$_3$ (Fig. 10c). Thus, an isotope effect of 4.1 ppb from the remote CD$_3$ group is present. The analysis of the signal

Figure 7. a) Temperature dependence of the 58.9 MHz 6Li-NMR spectrum of an equimolar salt-free mixture of deuteriated and non-deuteriated 1-lithio-trans-2,3-dimethylcyclopropane (2) 0.2 M in [D$_{10}$]diethylether/[D$_8$]THF (7:3); b) the same signal at 58.9 (left) and 73.6 MHz (right) enlarged showing the overlap of two triplets of unequal intensity; c) two-dimensional nuclear Overhauser (HOESY) spectrum of 2/[1-D]2 at 179 K showing crosspeaks between 6Li and H(1), H(2), and 3-CH$_3$(H-4).
intensities, the splitting patterns as well as the NOE effects shows that apart from the tetramer 6 (signal 5) the mixed aggregates 10 (signals 4 and 6) and 11 (signals 2 and 3) are present.

There is no clear indication of the presence of a significant concentration of cluster 12 which should yield a doublet as its isotopic fingerprint. A number of smaller lines around 0.3 ppm, which indeed yield doublets in spectrum c), are unidentified and may come from this source. The 6Li resonance of the Li[BrBrBr] environment could coincide with the LiBr signal at 0 ppm.

If THF is used as the sole solvent, dramatic changes in the number of lines and their intensities as well as multiplicities are observed (Fig. 11). Cluster 6 (signal 5) is now the dominating species with a small contribution of 10 (signals 3 and 4). Again a long range isotope effect is observed for environment [LiCH$_3$CH$_3$Br]CH$_3$ (Fig. 11c). A doublet at 0.73 ppm in spectrum b) (signal 2) indicates the presence of a next neighbor environment [CH$_3$BrBr]. This cannot, however, originate from cluster 11, because this would require another signal of the same intensity at

Figure 8. a) 58.9 MHz 6Li-NMR spectra of 1-lithio-trans-2,3-dimethylcyclopropane 0.2 M in [D$_10$]diethylether at various temperatures; b) isotopic fingerprints for the 6Li-NMR signals shown in a) from an equimolar mixture of deuteriated and non-deuteriated 2 (T = tetramer, D = dimer, M = monomer).

Figure 9. a) 58.9 MHz 6Li-NMR spectrum of a mixture of CH$_3$Li and LiI (1:1) in [D$_10$]diethylether at 178 K; b) isotopic fingerprints observed for the signals shown in a) using an equimolar mixture of CH$_3$Li/CD$_3$Li and two equivalents of LiI.
ca. 1.1 ppm for the next neighbor combination [CH₃CH₂Br]. An interesting information as to the origin of this signal comes from the dynamic behavior of the ⁶Li spectrum, which shows coalescence between this doublet with the singlet of LiBr while the remaining resonances are virtually unaffected (Fig. 12). The doublet thus arises from a mixed dimer ¹³. This is nicely born out by the ¹³C-NMR spectrum, which shows in addition the septuplet of the tetramer ⁶ (J = 5.7 Hz) a quintuplet with J = 9.8 Hz, compatible with a dimer (Fig. 12b).

Compared to the results of the earlier investigations⁵⁸,⁵⁹, which were based on the temperature and concentration dependence of the ⁶Li chemical shifts, the isotopic fingerprint method thus established the additional existence of aggregates ⁸, ⁹ and ¹³.

Figure 10. a) 58.9 MHz ⁶Li-NMR spectrum of CH₃Li in the presence of LiBr (1:1) in [D₁₀]diethyl ether at 183 K; b) nuclear Overhauser difference spectrum of a); c) isotopic fingerprints for an equimolar mixture of CH₃Li/CD₃Li and two moles of LiBr under the same conditions as in a); d) highly resolved signals at 1.0-1.1 ppm showing doublet splitting due to an additional isotope shift for the low-field triplet.

Figure 11. a) 58.9 MHz ⁶Li-NMR spectrum of CH₃Li in the presence of LiBr (1:1) in [D₈]THF at 183 K; b) isotopic fingerprints for an equimolar mixture of CH₃Li/CD₃Li and two moles of LiBr under the same conditions as in a); c) highly resolved signals at 0.7-0.9 ppm showing an additional isotope shift for the low-field triplet.

One- and Two-Dimensional NMR Experiments Based on Scalar Spin-Spin Coupling and Nuclear Overhauser Effects

Scalar spin-spin coupling is one of the fundamental NMR phenomena for chemical structure determinations and lends color to the otherwise rather dull singlet spectra of uncoupled spins. Even more important, scalar interactions form the basis for numerous one- and two-dimensional experiments which yield information on atomic connectivities in a given molecular structure.

In the case of organolithium compounds, the magnitude of spin-spin coupling involving lithium strongly depends on the coupling partner, with fairly large values (> 2 Hz) for ¹³C, ¹⁵N, and ³¹P and small values (< 1 Hz) for ¹H and homonuclear ⁶,⁷Li, ⁶,⁷Li coupling. The sensitivity of various new NMR techniques for small coupling constants is thus
of considerable interest if ^6Li, ^1H or ^6Li, ^6Li coupling is to be detected.

It is important to remember that information about the structure of the various aggregates of RLi systems which are formed in solution in the presence or absence of stabilizing diamines and other ligands comes primarily from spin-spin coupling or nuclear Overhauser effects which involve lithium and to a lesser extent from chemical shift data of the ligands. ^1H coupling ($X = ^1\text{H, }^1\text{C, }^1\text{N, }^3\text{P}$) within the ligands R does not yield information about aggregate size or structure and coupling between protons or X nuclei of different ligands R is normally not observed. Thus, in this context ^6Li, ^7Li and homonuclear ^6Li, ^7Li couplings are of fundamental importance.

Homonuclear experiments

From the various homonuclear 2D NMR experiments which can be applied to detect and measure scalar spin-spin coupling, the COSY, COSY-DQF, TOCSY and INADEQUATE experiments were used in this context successfully for ^6Li, ^7Li spin systems. Experiments with ^7Li generally profit from the smaller linewidth of ^6Li as compared to ^7Li signals, but the larger ^7Li, ^7Li coupling (factor $2.64^2 \sim 7$ due to the ratio $\gamma(7\text{Li})/\gamma(6\text{Li}) = 2.64$) is an attractive feature of ^7Li, ^7Li experiments, since small splitting might lead to an elimination of cross peaks in the 2D spectra if antiphase components result. The identification of homonuclear ^6Li, ^6Li coupling, which so far has never been resolved in a normal 1D Li-NMR spectrum, is important in cases where several non-isochronous ^6Li-NMR signals are observed. These belonging to the same cluster can then be recognized if homonuclear coupling exists, which requires short lithium distances typical for Li-C-Li arrangements. It is not clear if coupling between the two Li nuclei is transmitted directly or as a geminal interaction via the carbon.

From the 2D techniques cited above, the INADEQUATE and the COSY-DQF experiment have the additional advantage of a built-in double quantum filter which eliminates any true singlet from the observed spectrum. For the detection of ^6Li, ^6Li coupling, the INADEQUATE experiment is most easily applied with appreciable time saving in its 1D version recently performed also for ^7Li (Fig. 13). But it is also an attractive choice for other applications and was used to measure for the first time a homonuclear ^1N, ^1N coupling in a mixed aggregate of lithiated amides. As is well known from investigations by Collum et al., lithium disopropylamide (LDA) forms dimers in THF and cyclic trimers and higher cyclic oligomers in hydrocarbon solvents. For a 1:1 mixture of ^{15}N and ^6Li labeled LDA and lithium di(3-pentyl)amide (LDPA) in THF we observed the expected four ^{15}N signals - two of them nearly degenerate - stemming from the symmetric aggregates 14 and 16 and the mixed aggregate 15 (Fig. 14). All signals...
show quintuplet splittings due to coupling to two ^6Li with a coupling constant of 5.0 Hz (Fig. 14a).

The 1D $^{15}\text{N},^{15}\text{N}$ INADEQUATE experiment (Fig. 14b), which selects coupled AX systems identifies the two signals belonging to $^{15}\text{N}_A$ and $^{15}\text{N}_B$ of the mixed aggregate which now show an additional antiphase splitting of 1.6 Hz due to the homonuclear geminal $^{15}\text{N}_A^{15}\text{N}_B$ coupling. A further observation of interest is the different intensity of the two ^{15}N signals which results from different nuclear Overhauser effects in the two amide residues, where the larger number of protons in the LDPA part of the mixed cluster enhances the intensity of the $^{15}\text{N}_B$ signal. The ^{15}N assignment which follows from this effect is in agreement with the assignment derived from substituent increments where a $^\beta$-methyl group leads to a downfield shift.

In changing the solvent to hexane the number of ^{15}N signals increases which indicates also an increase of coexisting structures (Fig. 15a). The INADEQUATE experiment (Fig. 15b) selects two ^{15}N AX systems which we assign to cyclic aggregates ($^{\text{RLi}})_n$ with $n = 3$ or 4 (17, 18), because the homonuclear $^{15}\text{N},^{15}\text{N}$ coupling now drops to 1.0 Hz. This is a strong indication of a structural change to a cyclic trimer or a higher cyclic aggregate where only one coupling path is available between the two nitrogens.

Analysis of ligand ^1H spectra

For the analysis of ligand structures, ^1H-NMR plays an important part in many cases and the possibility to start magnetization transfer selectively is an attractive feature of several 1D versions of well-known 2D NMR experiments. For example, the selective homonuclear ^1H TOCSY experiment, improved by trim pulses (TP) and a z-filter (pulse sequence (1)) can be employed to unravel the strongly coupled ^1H spectrum of cyclohexyllithium. As shown in Fig. 16, starting the magnetization transfer at the tertiary proton adjacent to the metal, which has a resonance well separated from the remaining signals by its low-field shift, axial and equatorial protons at subsequent ring positions are differentiated by the variable mixing time.
Another application of selective excitation is indicated if deuteriated isotopomers of certain solvents are not easily available and \(^1H \) signals of interest might overlap with large solvent peaks. Selective excitation of the particular spin system then allows elimination of the solvent signals and the inspection of spectral regions which were before masked by the solvent lines. An example is shown in Fig. 17 with the application of a 1D COSY experiment\(^70\) to the \(^1H \) spectrum of isopropyllithium, a compound that forms tetramers and hexamers in hydrocarbon solvents.\(^72,73\) At around 200 K in pentane the tetramer/hexamer ratio is ca. 10:1. Here we start with a selective 90° pulse, thereby defining the origin of the magnetization transfer which follows (pulse sequence (2)). The detection of the methyl resonances of both aggregates, which are hidden under the huge solvent lines, allows the chemical shifts of the methyl protons and the vicinal \(^1H,^1H\) coupling constants to be measured. An advantage is the antiphase character of both doublets, which facilitates the extraction of the NMR parameters by discriminating artefacts.

\[
90^\circ (\text{sel}) - - - - \Delta t_1 - - - - 90^\circ, \text{FID}
\]

Heteronuclear shift correlations

Heteronuclear shift correlations have been used quite frequently with success to correlate \(^1H, ^13C, ^15N, \) and \(^31P\) signals with the relevant \(^6Li\) resonances of the aggregates of interest and in many cases the appropriate experiments with \(^2H\) as a spin-1 nucleus have paved the way.\(^74-79\) Over the years, these experimental techniques have been considerably improved and especially the so-called *inverse* tech-

![Figure 16](image1.png)

Figure 16. One-dimensional \(^1H\)-TOCSY spectra of cyclohexyllithium with variation of the mixing time provided by the MLEV method (pulse sequence (1)); \(1-H_2 \) at -0.9 ppm not shown.

![Figure 17](image2.png)

Figure 17. a) One-dimensional \(^1H,^1H\)-COSY spectrum (pulse sequence (2)) of isopropyllithium 1.4M in \(n\)-pentane at 200 K; (+) solvent signals, (+) educt signal, (x) signal from propene b) selective excitation at the resonance of \(H(1) \) of the tetramer by magnetization transfer from \(H(2) \); c) selective excitation at the resonance of \(H(1) \) of the hexamer by magnetization transfer from \(H(2') \).
niques based on multiple quantum coherences (the HMOC experiment, pulse sequence (3)), where the experimental success relies on the suppression of uncoupled I magnetization, have profited from hardware developments, the application of additional pulses like the BIRD sequence, and more recently from the introduction of linear field gradients.

\[\begin{align*}
& I: 90^\circ x - \cdots - - \Delta t - \cdots - - 180^\circ x - \cdots - - \text{FID}(t_2) \\
& S: \cdots - \cdots - - 90^\circ x - \cdots - - t_1 - \cdots - - 90^\circ_9 \quad (3)
\end{align*} \]

The inverse \(^{13}\text{C},^{6}\text{Li}\) experiment with \(^{6}\text{Li}\) detection (pulse sequence (3), \(I = ^{6}\text{Li}, \ S = ^{13}\text{C}\)), which was used for the first successful realization of a two-dimensional \(^{13}\text{C},^{6}\text{Li}\) shift correlation, not only yields correlation information, but also allows \(^{13}\text{C},^{6}\text{Li}\) coupling constants to be determined since usually the \(S\) nucleus is not decoupled during \(I\) signal acquisition (Fig. 18a). This experiment can also be performed most effectively and time saving by the corresponding 1D version (pulse sequence (4)), as demonstrated in Fig. 18c.

\[\begin{align*}
& {^{1}\text{H}}: \quad \cdots - - \text{MLEV} - \cdots - \\
& ^{6}\text{Li}: \quad 90^\circ - \cdots - \Delta t - \cdots - - 180^\circ, \text{FID} \\
& ^{13}\text{C}: \quad \cdots - \cdots - \cdots - - 90^\circ, 90^\circ \quad (4)
\end{align*} \]

A recent addition to the list of \(X,^{6}\text{Li}\) correlations is the \(^{29}\text{Si},^{6}\text{Li}\) experiment based on sizable scalar \(^{29}\text{Si},^{6}\text{Li}\) coupling. An example is shown in Fig. 19 with the result for the dimer of \((E)-1\)-lithio-2-(o-lithiophenyl)-1-trimethylsilylethene (Fig. 19).

Heteronuclear Overhauser spectroscopy

Finally, turning to \(^{1}\text{H},^{6}\text{Li}\) nuclear Overhauser spectroscopy, the 2D \(^{1}\text{H},^{6}\text{Li}\) HOESY experiment is one of the important tools in structure elucidation of organolithium compounds. Recent developments in this field have led to the proposal of the inverse experiment with \(^{1}\text{H}\) detection which has the advantage of higher spectral dispersion in the \(^{1}\text{H}\) domain. The idea was originally put forward already in 1990 by Bauer and Schleyer, but only the introduction

Figure 18. a) Two-dimensional inverse \(^{6}\text{Li},^{13}\text{C}\) shift correlation (pulse sequence (3)) for the oligomers of isopropyllithium 1.4 M in \(n\)-pentane at 220 K; exp. time 7 h; b) \(F_2\) traces of the crosspeaks with \(^{6}\text{Li},^{13}\text{C}\) coupling constants, typical for hexameric (3.2 Hz) and tetrameric (5.9 Hz) aggregates; c) result of a one-dimensional experiment (pulse sequence (4)) showing the \(^{13}\text{C}\) satellites in the \(^{6}\text{Li}\) spectrum; exp. time 40 min (H = hexamer, T = tetramer).
of linear B_0 field gradient techniques paved the way for a practical solution of the experimental difficulty to eliminate the dominating proton magnetization which is not due to a heteronuclear $^6\text{Li}\rightarrow^1\text{H} \text{NOE}^{86b}$. It was found that the experiment is best performed with the $^7\text{Li},^1\text{H}$ spin pair, apparently due to the stronger dipolar interactions and the faster relaxation rate of ^7Li as compared to ^6Li.

In an attempt to transfer these ideas to the one-dimensional version of the NOE measurement, we based our experiments on results reported by Keeler et al.87 for gradient enhanced $^1\text{H},^1\text{H}$ nuclear Overhauser (GOESY) spectroscopy and introduced two frequency channels along the lines of the 2D $^1\text{H},^6\text{Li}$ HOESY experiment. This leads to a pulse sequence shown in Fig. 20, which takes advantage of a later version of the GOESY experiment88. Here, the first part up to the gradient pulse G_4 serves for the selection of the desired ^7Li magnetization, $I(7\text{Li})_{\text{sel}}$, of a particular lithium resonance, $^7\text{Li}_k$, which is to be transferred to the protons. Therefore, the conditions $G_1 = G_2$ and $G_3 = G_4$ refocus $I(7\text{Li})_{\text{sel}}$ because the two selective 180° pulses change the sign of the coherences. The 90° ^1H pulse produces transverse proton magnetization which is destroyed by the gradient pulse G_5, leaving for detection only the Overhauser enhancement which builds up during the mixing time through transfer from the selected nucleus $^7\text{Li}_k$.

Experimental results for the well characterized dimer of (Z)-2-lithio-1-(α-lithiophenyl)ethene89 are shown in Fig. 21. In spectrum b) we see strong NOE’s between Li(2) and both olefinic protons, in spectrum c) between Li(2′) and H(3) at the aromatic ring. Weaker responses are coming in spectrum b) for H(3) and in spectrum c) for H(1) and H(2). In contrast, the 2D $^1\text{H},^6\text{Li}$ HOESY spectrum (Fig. 21d) shows only the relationships Li(2)/H(2) and Li(2′)/H(3) which are also the strongest in the 1D experiment.

Noteworthy is the enormous time advantage of the 1D sequence: these spectra were recorded within 35 min, while for the HOESY experiment 13 h had to be invested!

The Benzyllithium Story

"Ach wie gut daß niemand weiß, daß ich Rumpelstilzchen heiß"

Despite the power of modern NMR experiments, even in the case of simple organolithium systems all attempts to determine their solution structure may fail due to a variety of reasons, among which are low solubility and fast exchange dynamics. One of these small molecules, which preserved until recently the secret of its detailed structure in solution, is benzyllithium. Even today, all facets of this structural problem may not have been uncovered.

Early X-ray crystallographic studies for solids consisting of benzyllithium and donors like triethylamine90 or diethyl ether91 as ligands revealed chain structures with Li-C$_\alpha$ distances of 217 and 221 pm, respectively, and different orientations of the Li cation with respect to the benzyl residue. With respect to the solution structure, the results of calculations by various semi-empirical and ab initio methods92 are of interest, which suggested that in principle three alternative structures (19 - 21) may be discussed for solvated benzyllithium and its α-substituted derivatives (L = solvent or complexing ligand). Following MNDO results for the heat of formation93, the energy difference between the η^1 and η^3 structure is rather small (~4 kcal / mole, see next page).

Indeed, experimental evidence for a $\eta^1 \equiv \eta^3$ equilibrium was presented in the case of α-(dimethylamino)benzyl lithium in THF solution94.

Figure 19. Two-dimensional ^6Li detected 58.88/79 MHz $^6\text{Li},^{29}\text{Si}(^1\text{H})$ HMQC experiment for (pulse sequence (3)) for the dimer of (E)-1-lithio-2-(α-lithiophenyl)-1-trimethylsilylene (0.3M in [D$_8$]THF at 135 K); the delay Δ_1 was set to 37.5 ms, the signal splitting is 0.9 Hz; exp. time = 8 h 48 min.

Figure 20. Pulse sequence for gradient enhanced ^1H-detected $^7\text{Li},^1\text{H}$ one-dimensional nuclear Overhauser spectroscopy (cf. text); additional phase cycle $\Phi = 0°, 90°, 180°, 270°; \phi = 0°, 180°, 0°, 180°$.
For solids, Boche et al. focused again attention to this structural problem by reporting the results of an X-ray investigation for the \([\text{benzyllithium,THF,TMEDA}]\) complex\(^9\). These workers found a monomeric \(\eta^1\) structure with pyramidal C\(_\alpha\) and a Li-C\(_\alpha\) distance of 221 pm. Among the various \(\alpha\)-substituted benzyl systems which have been studied by X-ray diffraction\(^9\), the trimethylsilyl substituted system \([\text{C}_6\text{H}_5\text{CHSi(\text{CH}_3)\text{Li}}]\) is of particular interest. Here, a \(\eta^2\) structure with pyramidal C\(_\alpha\) and a Li-C\(_\alpha\) distance of 221 pm was observed.

![Figure 21](image)

Figure 21. a) - c) One dimensional gradient enhanced \(^1\)H-detected \(^7\)Li,\(^1\)H nuclear Overhauser spectra for the dimer of \((Z)\)-2-lithio-1-(\(\alpha\)-lithiophenyl)ethene 0.3 M in [D\(_1\)]diethylether at RT (cf. text); d) two-dimensional \(^1\)H,\(^6\)Li HOESY spectrum for the same sample.

\[^9\]Boche et al. focused again attention to this structural problem by reporting the results of an X-ray investigation for the \([\text{benzyllithium,THF,TMEDA}]\) complex. These workers found a monomeric \(\eta^1\) structure with pyramidal C\(_\alpha\) and a Li-C\(_\alpha\) distance of 221 pm. Among the various \(\alpha\)-substituted benzyl systems which have been studied by X-ray diffraction, the trimethylsilyl substituted system \([\text{C}_6\text{H}_5\text{CHSi(\text{CH}_3)\text{Li}}]\) is of particular interest. Here, a \(\eta^2\) structure with pyramidal C\(_\alpha\) and a Li-C\(_\alpha\) distance of 221 pm was observed.
A distance of 213 pm was found in the crystal and according to 1H,6Li and 13C,6Li HOESY measurements, the same or a closely related structure prevails in solution.

The earliest solution studies had already indicated that benzyllithium is monomeric, but in the NMR spectrum of 6Li labeled material no 13C,6Li coupling constant was found. This is also true for α-substituted derivatives, with the single exception of a phenylsubstituted cyclopropyl system. Consequently, for solute samples one could expect solvent separated ion pairs or fast equilibria between contact ion pairs or dynamic processes between both structural alternatives. The existence of rapid dynamic processes was also indicated by the low configurational stability of α-substituted derivatives.

Findings reported recently carry our understanding of these structural aspects a step further. By chaining up the lithium cation to C$_\alpha$ via a crown ether ‘necklace’, Hoffmann and Boche were able to observe for the first time a scalar 13C$_\alpha$,6Li coupling constant in compounds 22 and 23 in THF at 203 K (22: $J(^{13}$C$_\alpha$,7Li) = 7.0 Hz, 23: $J(^{13}$C$_\alpha$,6Li) = 3.1 Hz which corresponds to $J(^{13}$C$_\alpha$,7Li) = 9.0 Hz). 1H,6Li HOESY experiments suggest an arrangement such as that shown in 24 for these monomeric systems.

At the same time, using a similar strategy, Fraenkel and Martin found 13C$_\alpha$,6Li couplings of 2.8 and 3.4 Hz in THF at 250 K for the two compounds 25a and 25b and we observed 13C, 6Li couplings (2.7 Hz) for the lithium cation trapped in the organic ligand of the Schlenk dimer 26 where the second lithium exists as a solvent separated ion. Even more interesting, Fraenkel and Martin were able to measure a 13C$_\alpha$,6Li coupling of 3.8 Hz for the parent compound itself in the presence of TMEDA, using 13C and 6Li labeling, low concentration (0.005 M in THF), and low temperature (180 K). Thus, finally the conversation of the C$_\alpha$ and 6Li spin was tapped, but the low value of the coupling constants is unexpected in view of the findings that monomers usually show 13C, 6Li coupling close to 17 Hz. Fraenkel assumes that this suggests the existence of a continuum of covalency between ‘classical’ monomers with large coupling and solvent separated ion pairs with no coupling at all. But, as mentioned above, the benzyllithium system is probably still good for a number of surprises.

Compounds with π- and σ-Bound Lithium

The strong shielding and deshielding effects exerted by cyclic π-systems on surrounding protons has long fascinated annulene chemists who coined the terms *diatropic* and *paratropic* to describe the diamagnetic and paramagnetic shielding properties of (4n+2) and (4n)π-systems, respectively. In particular the oxidation or reduction of neutral hydrocarbons to the corresponding dications or dianions, respectively, has generated interesting systems where the difference in the number of π-electrons results in spectacular shielding and deshielding effects in proton NMR spectra. An example from our laboratory is the generation of methano[10]annulene dianion (28) from methano[10]annulene (27) by reduction with lithium metal.
The transformation $27 \rightarrow 28$ was achieved after earlier unsuccessful attempts by using ultrasonic radiation or by simply attaching the sealed NMR tube with the parent hydrocarbon and lithium sand in THF to the rod of a vibrational mixer. This technique was also successful in the case of biphenylene, where we had found that the dianion 29, formed initially via reduction by potassium in THF, reacts with protic solvents to yield benzocyclo-octatetraene (31) via the Woodward-Hoffmann allowed ring opening reaction of the primarily formed 4a,8b-dihydrobiphenylene (30). In the absence of proton donors, 29 has a half-life of 1.7 h and opens the four-membered ring to yield o,o'-dilithiodiphenyl (32), a compound with a lithium double bridge.

The reduction of benzoannelated Biphenylenes

In an attempt to study this reaction in the case of benzoannelated biphenylenes, we treated benzo[5]biphenylene (33) with lithium sand in diethylether. Instead of the dianion we found immediate formation of 2-o-lithiophenyl-3-lithionaphthalene (34), which yields a purple solution and is characterized by two ABCD systems and two singlets in the 1H-NMR spectrum. Two carbon resonances at 174.2 and 176.0 ppm and a 6Li singlet at 2.30 ppm (rel. to ext. 0.1 M LiBr in THF) complete the information which is significant for the structure.

In contrast, the oxidation of the hydrocarbon 33 with the ‘Olah mixture’ SbF$_5$/SO$_2$ClF at -30 °C yielded the 14π electron system 35 which is, at that temperature, perfectly stable. Its Q-value112 of 1.43 as determined from the bond orders derived on the basis of the vicinal H,H coupling constants 3J(6,7) and 3J(7,8) via analysis of the 1H-NMR spectrum, is typical for a benzoannelated diatropic system, in the present case the 10π electron system of biphenylene dication.
Completely different NMR spectra were observed when the reduction of 33 was carried out in THF. In particular the \(^1\)H- spectrum showed spectacular high-field shifts for some of the protons, which resonate at 2.25 and 2.60 ppm. Similar spectacular high-field shifts for ‘aromatic’ protons were found before in the case of dilithionaphthalenediide\(^{113}\). Most conclusive evidence for the structure of the new product came from the deuteron NMR spectrum of the deuterolysis product, which showed four signals, two in the allylic, one in the olefinic, and one in the aromatic region. All spectroscopic data, including the \(^{13}\)C and \(^6\)Li spectra, where in accord with the tetralithiated structure 36 which has π- and σ-bound lithium as a unique feature\(^{114}\). Additional proof for the proposed structure came from an experiment where 34 was prepared in diethylether and further reduction was carried out after replacing this solvent by THF.

The interesting structural properties of 36 with π- and σ-bound lithium initiated related studies for dibenzo\([b,h]\)biphenylene (37) and naphtho\([b]\)biphenylene (38)\(^ {115}\). In both cases reduction with lithium sand in diethylether yielded the dianions, 39 and 40, respectively, which could be fully characterized by their NMR spectra. Surprisingly, however, both are paratropic systems with high-field shifted \(^1\)H resonances (2.81, 4.49, and 4.98 ppm for 39, and 2.40, 3.43 and 3.96 ppm for 40), despite the total number of 22π-electrons. The Q-values are 0.963 for 39 and 0.982 for 40 and point in the same direction. The NMR data of 39 closely resemble those of dilithionaphthalenediide which suggests a mesomorphic structure \(39a \leftrightarrow 39b\), while 40 resembles a phenylene-annelated anthracene dianion. In contrast to the dianions of the linear annelated systems, the dianion of the angular annelated benzo\([a]\)biphenylene (41) is perfectly stable. If 37 and 38 are reduced in THF, again four-membered ring opening and a second reduction to the new tetralithio compounds 42 and 43 is observed.

Conclusion

The topics discussed show how a variety of high-resolution NMR techniques can be used in structural research in the field of organolithium compounds. Isotope shifts as well as homo- and heteronuclear shift correlations and nuclear Overhauser spectroscopy provide detailed informations about the aggregation behavior of lithiated carbon compounds which are important synthetic aids. In particu-
lar techniques which utilize the nuclides 6Li and 7Li yield valuable insights into the course of lithiation reactions, aggregate formation and dynamics.

Acknowledgements

As far as our own efforts in the field of organolithium chemistry and its NMR spectroscopy are concerned, I am deeply obliged to my coworkers for their enthusiastic collaboration. In particular I thank Werner Andres, Rainer Benken, Klaus Bergander, Bernd Böhler, Oswald Eppers, Thomas Fox, María-Eugenia Günther, Heike Hausmann, Runxi He, Dietmar Hiils, Martin Kreutz, Hans-Egbert Mons, Detlef Moskau, and Cirsten Zaeske for their fine contributions. Many ideas and stimulations came from my colleague, Prof. Dr. Adalbert Maercker, Siegen, and his coworkers, which is gratefully acknowledged. Thanks for financial support is due to the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Chemetall Company, Frankfurt.

References

37. For an early review see Batiz-Hernandez, H.; Bernheim, R.A. Progr. NMR Spectrosc. 1967, 3, 63.
51. As a shift phenomenon, the measurement of NMR isotope effects profits from high B0 fields and the use of the lately introduced 750 or even 800 MHz instruments may well lead to the detection of hitherto unobserved isotope shifts.
54. Attempts to measure 2H-induced isotope shifts for 7Li so far failed because of the larger linewidth as compared to 6Li, which furthermore increases at low temperature in the slow exchange limit due to increasing quadrupole relaxation.

Received: March 29, 1999