Microwave-Assisted Convenient Syntheses of 2-Indolizine Derivatives from Morita-Baylis-Hillman Adducts: New in silico Potential Ion Channel Modulators

Saraghina M. D. Cunha, Ramon G. Oliveira and Mário L. A. A. Vasconcellos*

Departamento de Química, Universidade Federal da Paraíba, Campus I, 58059-900 João Pessoa-PB, Brazil

Spectroscopy data

2-[hydroxy(pyridine-2-yl)methyl] acrylonitrile (1). ¹H NMR (200 MHz, CDCl₃) δ 7.84(d, 1H, J 8 Hz), 7.65 (s, 1H), 7.32(d, 1H, J 8 Hz), 6.78 (m, 1H), 6.61(m, 2H).
¹³C NMR (50 MHz, CDCl₃) δ 97.90, 103.14, 117.21, 118.20, 120.19, 120.34, 125.79, 133.31 IR (KBr) ν max/cm⁻¹ 3128.54(C-H sp2), 2229.71(CN), 1635.64 and 1404.18(C=C).

Methyl indolizine-2-carboxylate (2). ¹H NMR (200 MHz, CDCl₃) δ 7.80 (m, 2H), 7.31(d, 1H J 8 Hz), 6.81 (s,1H), 6.66 (m, 1H), 6.50 (m. 1H), 3.87 (s, 1H). ¹³C NMR (50 MHz, CDCl₃) δ 52.13, 101.08, 112.95, 116.60, 118.85,120.29, 120.96, 126.06, 133.46, 166.29.

Indolizine-2-carboxylic acid (3). ¹H NMR (200 MHz, CDCl₃) δ 12.36 (s,1H,OH), 8.27 (d, 1H J 6, Hz), 8.05 (s, 1H), 7.44 (d, 1H, J 8 Hz), 6.74 (m,3H). ¹³C NMR (50 MHz, CDCl₃) δ 101.25, 113.22, 117.73, 119.68, 121.03, 121.29, 127.46, 133.43, 167.10 IR (KBr) ν max/cm⁻¹ 2920.23(O-H), 1670.35(C=O).

Indolizin-2-ylmethanamine (4). ¹H NMR (200 MHz, CDCl₃) δ 7.86 (m, 1H), 7.14 (s, 1H), 7.05 (d, 1H, J 8.), 6.37 (m, 1H), 6.20 (m, 1H), 6.03 (s, 1H), 3.51 (s, 2H).
¹³C NMR (50 MHz, CDCl₃) δ 98.98, 105.86, 110.64, 111.61, 117.88, 119.53, 126.80, 133.42; IR (KBr) ν max/cm⁻¹ 3275.13(NH),3109.25, 2920.23(C-H sp2), 2850.79(C-H sp3), 1589.34(N-H), 1300.02(C-N).

2-[hydroxyl(2-pyridinyl)methyl] acrylate (6). ¹H NMR (200 MHz, CDCl₃) δ 3.71 (s, 3H); 5.61 (s, 1H); 5.31 (s, 1H); 6.06 (s,1H,OH), 8.27 (d, 1H J 6, Hz), 8.05 (s, 1H), 7.19 (ddd, 1H, J 7.8/5.6 Hz); 7.40 (d,1H, J 8 Hz); 7.66 (ddd,1H, J 7.8/7.6/1.6 Hz); 8.51 (m, 1H). ¹³C NMR (50 MHz, CDCl₃) δ 51.82; 72.01; 121.22; 122.61;126.83; 136.82; 141.56; 148.16; 159.40; 166.47.

2-[Hydroxy(pyridin-2-yl)methyl] acrylonitrile (7). ¹H NMR (200 MHz, CDCl₃) δ 5.00 (s, 1H); 5.31 (s, 1H); 5.06 (s,1H); 6.23 (s, 1H); 7.31 (m, 1H); 7.41 (d, 1H, J 7.8 Hz); 7.77 (ddd, 1H, J 7.8/7.6/1.6 Hz); 8.57 (m, 1H).
¹³C NMR (50 MHz, CDCl₃) δ 74.36, 117.88, 119.53, 126.80, 133.42; IR (KBr) ν max/cm⁻¹ 3275.13(NH),3109.25, 2920.23(C-H sp2), 2850.79(C-H sp3), 1589.34(N-H), 1300.02(C-N).
Figure S1. 1H NMR spectrum of compound 6.

Figure S2. 13C NMR spectrum of compound 6.
2-[Hydroxy(pyridin-2-yl)methyl] acrylonitrile (7)

Figure S3. FTIR spectrum of compound 7.

Figure S4. 1H NMR spectrum of compound 7.
Figure S5. 13C NMR spectrum of compound 7.

Indolizine-2-carbonitrile (1)

Figure S6. FTIR spectrum of compound 1.
Figure S7. 1H NMR spectrum of compound 1.

Figure S8. 13C NMR spectrum of compound 1.

Figure S9. HRGC Chromatogram of compound 1.
Microwave-Assisted Convenient Syntheses of 2-Indolizine Derivatives from Morita-Baylis-Hillman Adducts

Figure S10. EI-MS spectra of compound 1.

Methyl indolizine-2-carboxylate (2)

Figure S11. FTIR spectrum of compound 2.

Figure S12. 1H NMR spectrum of compound 2.
Figure S13. 13C NMR spectrum of compound 2.

Figure S14. HRGC Chromatogram of compound 2.

Figure S15. El-MS spectra of compound 2.
Indolizine-2-carboxylic acid (3)

Figure S16. FTIR spectrum of compound 3.

Figure S17. 1H NMR spectrum of compound 3.
Figure S18. 13C NMR spectrum of compound 3.

Indolizin-2-ylmethanamine (4)

Figure S19. FTIR spectrum of compound 4.
Figure S20. 1H NMR spectrum of compound 4.

Figure S21. 13C NMR spectrum of compound 4.

Figure S22. HRGC Chromatogram of compound 4.
Figure S23. EI-MS spectra of compound 4.

Indolizin-2-ylmethanol (5)

Figure S24. FTIR spectrum of compound 5.
Figure S25. 13C NMR spectrum of compound 5.

Figure S26. HRGC Chromatogram of compound 5.
Figure S27. EI-MS spectra of compound 5.