Efficient Synthesis of Rhodanine-Based Amides via Passerini Reaction using Tetramethylguanidine-Functionalized Silica Nanoparticles as Reusable Catalyst

Robabeh Baharfar,*a Razieh Azimi,* Sheida Barzegar* and Mojtaba Mohsenib

*aDepartment of Organic Chemistry, Faculty of Chemistry and bDepartment of Biology, Faculty of Basic Sciences, University of Mazandaran, 4741695447 Babolsar, Iran

Characterization of catalyst

The catalyst structure was characterized by elemental analysis (CHN), Fourier-transform infrared (FTIR) spectroscopy, termogravimetric analysis (TGA), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM).

FTIR spectra of nano-SiO₂, SiO₂-Cl and TMG-SiO₂ NPs are shown in Figure S1. The peaks around 460, 805 and 1100 cm⁻¹ are the typical Si–O–Si band attributed to the condensed silica network present in pure and modified silica. For all samples, the absorption bands at 1630 and 3445 cm⁻¹ can be associated to the O–H vibration of silanol groups and absorbed water. The characteristic peaks at about 2850 and 2913 cm⁻¹, which are related to the C–H stretching of alkyl groups (Figures S1b, S1c); in addition, the absorption bands at 1445 cm⁻¹ and 1620 cm⁻¹ due to stretching vibrations of C–N and C=N groups displayed, indicating that tetramethylguanidine (TMG) has been loaded into the support (Figure S1c).

TG curve of TMG-SiO₂ NPs (Figure S2) revealed an initial weight loss of 3.24% below 150 °C due to the adsorbed water on the surface of catalyst. Complete loss of the organic species was observed in the temperature range of 220-600 °C, with the amount of organic moiety nearly 7.65% (0.5 mmol of TMG per 1.0 g of the catalyst).

XRD diffractogram of TMG-SiO₂ NPs shows strong broad peak at 22° (2θ), which is characteristic of amorphous nano silica (Figure S3).

From the multiple FE-SEM images, it can be determined that the average diameter of SiO₂ nanoparticles after immobilization of TMG is about 40 nm (Figure S4). Moreover, the FE-SEM image of the recycled catalyst after the 5th reaction run revealed that nanostructure of TMG-SiO₂ NPs was retained during the catalysis and the recycling experiments.

Figure S1. FTIR spectra of (a) SiO₂, (b) SiO₂-Cl and (c) TMG-SiO₂ NPs.

*e-mail: baharfar@umz.ac.ir
Figure S2. Thermal gravimetric analysis of TMG-Si₂O₅ NPs.

Figure S3. XRD pattern of the TMG-Si₂O₅ NPs.
Figure S4. FE-SEM images of nano silica (a); TMG-SiO2 NPs before use (b) and after reuse five times (c).
Figure S5. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4a.

Figure S6. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4a.
Figure S7. Mass spectrum of 4a.

Figure S8. IR spectrum (KBr) of 4a.
Figure S9. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4b.

Figure S10. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4b.
Figure S11. Mass spectrum of 4b.

Figure S12. IR spectrum (KBr) of 4b.
Figure S13. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4c.

Figure S14. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4c.
Figure S15. Mass spectrum of 4c.

Figure S16. IR spectrum (KBr) of 4c.
Figure S17. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4d.

Figure S18. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4d.
Figure S19. Mass spectrum of 4d.

Figure S20. IR spectrum (KBr) of 4d.
Figure S21. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4e.

Figure S22. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4e.
Figure S23. Mass spectrum of 4e.

Figure S24. IR spectrum (KBr) of 4e.
Figure S25. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4f.

Figure S26. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4f.
Figure S27. Mass spectrum of 4f.

Figure S28. IR spectrum (KBr) of 4f.
Figure S29. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4g.

Figure S30. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4g.
Figure S31. Mass spectrum of 4g.

Figure S32. IR spectrum (KBr) of 4g.
Figure S33. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4h.

Figure S34. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4h.
Figure S35. Mass spectrum of 4h.

Figure S36. IR spectrum (KBr) of 4h.
Figure S37. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4i.

Figure S38. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4i.
Figure S39. Mass spectrum of 4i.

Figure S40. IR spectrum (KBr) of 4i.
Figure S41. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4j.

Figure S42. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4j.
Figure S43. Mass spectrum of 4j.

Figure S44. IR spectrum (KBr) of 4j.