Supplementary Information

Non-Enzymatic Amperometric Determination of Glucose by CuO Nanobelt Graphene Composite Modified Glassy Carbon Electrode

Sreeramareddygari Muralikrishna, Kempahanumakkagari Sureshkumar, Zhou Yan, Carlos Fernandez and Thippeswamy Ramakrishnappa*

*aCenter for Nano and Material Science, Global Campus, Jain University, Jakkasandra (P), Kankapura (T), 560001 Bangalore, Karnataka, India

*bDepartment of Chemistry, School of Science, China University of Petroleum (East China), 266580 Qingdao, China

‘School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, AB10 7GJ Aberdeen, United Kingdom

Figure S1. The oxidation currents obtained in different electrolytes in amperometry (a) NaOH; (b) carbonate buffer and (c) phosphate buffer (applied oxidation potential 0.5 V, 1.0 µmol L⁻¹ glucose).

Figure S2. The oxidation currents obtained at different applied oxidation potential in amperometry (0.1 mol L⁻¹ NaOH, 1.0 µmol L⁻¹ glucose).

*e-mail: t.ramakrishnappa@jainuniversity.ac.in
Figure S3. The effect of amount of composite deposited on the electrode (applied oxidation potential 0.55 V, 1.0 µmol L⁻¹ glucose, 0.1 mol L⁻¹ NaOH).