Supplementary Information

Effects of the Peripheral Heteroaryl Substituents on the Photochromism of New Pyridine-Containing Diarylethenes

Guanming Liao, Dandan Xue, Chunhong Zheng, * Renjie Wang and Shouzhi Pu*

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 330013 Nanchang, P. R. China

Supplementary data

Figure S1. Absorption spectral changes of 2 and 3 induced by photoirradiation in hexane (2.0 × 10^{-5} mol L^{-1}):
(a) 2; and (b) 3.

*e-mail: articlechem@163.com, pushouzhi@tsinghua.org.cn
Figure S2. Fatigue resistances of diarylethenes 1-3 in hexane in air atmosphere at room temperature. Initial absorbance of the sample was fixed at 1.0.

Figure S3. Thermal fading of 2c and 3c in hexane at various temperatures: (a) 2c; (b) 3c.

Figure S4. Fluorescence spectral changes of 2 and 3 in hexane (5.0 \times 10^{-5}\text{ mol L}^{-1}), excited at 300 nm: (a) 2; and (b) 3.
Figure S5. Packing views along the x direction: (a) 1o; (b) 2o; and (c) 3o.
Table S1. Crystallographic parameters of 1o-3o

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1o</th>
<th>2o</th>
<th>3o</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₂₀H₂₁F₅NS</td>
<td>C₂₇H₁₀F₆NS₂</td>
<td>C₂₆H₁₄F₆N₂S₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>529.53</td>
<td>535.55</td>
<td>536.54</td>
</tr>
<tr>
<td>Temperature / K</td>
<td>296(2)</td>
<td>296(2)</td>
<td>296(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
<td>triclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td>P-1</td>
<td>P2₁/c</td>
</tr>
<tr>
<td>Unit cell dimension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a / Å</td>
<td>9.4292(10)</td>
<td>8.6153(5)</td>
<td>15.0980(6)</td>
</tr>
<tr>
<td>b / Å</td>
<td>11.1096(13)</td>
<td>11.7960(8)</td>
<td>19.4054(8)</td>
</tr>
<tr>
<td>c / Å</td>
<td>13.6106(15)</td>
<td>13.6679(9)</td>
<td>8.4923(4)</td>
</tr>
<tr>
<td>α / degree</td>
<td>90.735(7)</td>
<td>73.315(3)</td>
<td>90.00</td>
</tr>
<tr>
<td>β / degree</td>
<td>106.507(6)</td>
<td>81.381(3)</td>
<td>98.468(2)</td>
</tr>
<tr>
<td>γ / degree</td>
<td>110.045(6)</td>
<td>68.866(2)</td>
<td>90.00</td>
</tr>
<tr>
<td>Volume / Å³</td>
<td>1274.6(2)</td>
<td>1239.37(14)</td>
<td>2460.97(18)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated) / (g cm⁻³)</td>
<td>1.380</td>
<td>1.435</td>
<td>1.448</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.126</td>
<td>1.004</td>
<td>1.041</td>
</tr>
<tr>
<td>Final R index [I/2σ(I)]</td>
<td>R1</td>
<td>wR2</td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>0.1068</td>
<td>0.0678</td>
<td>0.0778</td>
</tr>
</tbody>
</table>

Z: Number of chemical formula units per unit cell; F: structure factor; R: discrepancy index.
Figure S6. 1H NMR (400 MHz, CDCl$_3$) spectrum of 4.
Figure S7. 1H NMR (400 MHz, CDCl$_3$) spectrum of 5.

Figure S8. 1H NMR (400 MHz, CDCl$_3$) spectrum of 6.
Figure S9. 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (100 MHz, CDCl$_3$) spectra of 1o.
Figure S10. 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (100 MHz, CDCl$_3$) spectra of 2o.
Figure S11. 1H NMR (400 MHz, CDCl$_3$) and 13C NMR (100 MHz, CDCl$_3$) spectra of 3o.
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 140414lgm3_0m

<table>
<thead>
<tr>
<th>Bond precision: C-C = 0.0067 Å</th>
<th>Wavelength=0.71073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell:</td>
<td></td>
</tr>
<tr>
<td>a=9.4292(10)</td>
<td>b=11.1096(13)</td>
</tr>
<tr>
<td>alpha=90.735(7)</td>
<td>beta=106.507(6)</td>
</tr>
<tr>
<td>c=13.6106(15)</td>
<td>gamma=110.045(6)</td>
</tr>
<tr>
<td>Temperature: 296 K</td>
<td></td>
</tr>
<tr>
<td>Calculated</td>
<td>Reported</td>
</tr>
<tr>
<td>Volume</td>
<td>1274.6(3)</td>
</tr>
<tr>
<td>Space group</td>
<td>P -1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 1</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C29 H21 F6 N S</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C29 H21 F6 N S</td>
</tr>
<tr>
<td>Mr</td>
<td>529.53</td>
</tr>
<tr>
<td>Dx, g cm⁻³</td>
<td>1.380</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Mu (mm⁻¹)</td>
<td>0.189</td>
</tr>
<tr>
<td>F000</td>
<td>544.0</td>
</tr>
<tr>
<td>F000'</td>
<td>544.59</td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>11,13,16</td>
</tr>
<tr>
<td>Nref</td>
<td>4477</td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.959,0.967</td>
</tr>
<tr>
<td>Correction method= # Reported T Limits: Tmax=0.967</td>
<td></td>
</tr>
<tr>
<td>AbsCorr = NONE</td>
<td></td>
</tr>
<tr>
<td>Data completeness= 0.986</td>
<td>Theta(max)= 25.000</td>
</tr>
<tr>
<td>R(reflections)= 0.0819(3192)</td>
<td>wR2(reflections)= 0.2870(4415)</td>
</tr>
<tr>
<td>S = 1.126</td>
<td>Npar= 365</td>
</tr>
</tbody>
</table>

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.
Alert level C

ABSTY03_ALERT_1_C The _exptl_absorpt_correction_type has been given as none. However values have been given for Tmin and Tmax. Remove these if an absorption correction has not been applied.

From the CIF: _exptl_absorpt_correction_T_min 0.960
From the CIF: _exptl_absorpt_correction_T_max 0.967

RFACR01_ALERT_3_C The value of the weighted R factor is > 0.25

Weighted R factor given 0.287

PLAT084_ALERT_3_C High wR2 Value (i.e. > 0.25) 0.29 Report

PLAT213_ALERT_2_C Atom F1 has ADP max/min Ratio 3.2 prolat

PLAT234_ALERT_4_C Large Hirshfeld Difference F3’ -- C14 .. 0.17 Ang.

PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of C6 Check

PLAT242_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C13 Check

PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.0067 Ang.

Alert level G

PLAT005_ALERT_5_G No Embedded Refinement Details found in the CIF Please Do!

PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check

PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.16 Report

PLAT093_ALERT_1_G No s.u.’s on H-positions, Refinement Reported as mixed Check

PLAT242_ALERT_2_G Low ‘MainMol’ Ueq as Compared to Neighbors of C14 Check

PLAT242_ALERT_2_G Low ‘MainMol’ Ueq as Compared to Neighbors of C15 Check

PLAT301_ALERT_3_G Main Residue Disorder Percentage = 8 Note

PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF # 62 Check

PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note

0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
8 ALERT level C = Check. Ensure it is not caused by an omission or oversight
9 ALERT level G = General information/check it is not something unexpected

3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
6 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
3 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 29/02/2016; check.def file version of 29/02/2016
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE
FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED
CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 140302lgm_0m

Bond precision: C-C = 0.0052 Å Wavelength=0.71073

Cell: a=8.6153(5) b=11.7960(8) c=13.6679(9)
alpha=73.315(3) beta=81.381(3) gamma=68.866(2)

Temperature: 296 K

Table:

<table>
<thead>
<tr>
<th>Calculated</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>1239.37(14)</td>
</tr>
<tr>
<td>Space group</td>
<td>P -1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 1</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C27 H19 F6 N S2</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C27 H19 F6 N S2</td>
</tr>
<tr>
<td>Mr</td>
<td>535.55</td>
</tr>
<tr>
<td>Dx, g cm-3</td>
<td>1.435</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Mu (mm-1)</td>
<td>0.277</td>
</tr>
<tr>
<td>F000</td>
<td>548.0</td>
</tr>
<tr>
<td>F000’</td>
<td>548.83</td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>10,14,16</td>
</tr>
<tr>
<td>Nref</td>
<td>4358</td>
</tr>
<tr>
<td>Tmin, Tmax</td>
<td>0.941,0.951</td>
</tr>
<tr>
<td>Tmin’</td>
<td>0.941</td>
</tr>
</tbody>
</table>

Correction method= # Reported T Limits: Tmin=0.942 Tmax=0.952
AbsCorr = NONE

Data completeness= 0.982 Theta(max)= 25.000
R(reflections)= 0.0580(3572) wr2(reflections)= 0.1728(4280)

S = 1.004 Npar= 356

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
Alert level B

PLAT230_ALERT_2_B Hirshfeld Test Diff for C3 -- C4 .. 11.0 s.u.

Alert level C

ABSTY03_ALERT_1_C The _exptl_absorpt_correction_type has been given as none. However values have been given for Tmin and Tmax. Remove these if an absorption correction has not been applied.

From the CIF: _exptl_absorpt_correction_T_min 0.942
From the CIF: _exptl_absorpt_correction_T_max 0.952

PLAT220_ALERT_2_C Atom F6 has ADP max/min Ratio 3.1 prolat
PLAT223_ALERT_2_C Atom F5' has ADP max/min Ratio 3.3 prolat
PLAT241_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) Range 3.8 Ratio
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of S2 Check
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of C2 Check
PLAT242_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C3 Check
PLAT242_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C13 Check
PLAT242_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C24 Check
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.00521 Ang.

Alert level G

PLAT005_ALERT_5_G No Embedded Refinement Details found in the CIF Please Do!
PLAT066_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 2.00 Check
PLAT230_ALERT_2_G Hirshfeld Test Diff for F4 -- C14 .. 13.5 s.u.
PLAT242_ALERT_2_G Low ‘MainMol’ Ueq as Compared to Neighbors of C14 Check
PLAT242_ALERT_2_G Low ‘MainMol’ Ueq as Compared to Neighbors of C15 Check
PLAT301_ALERT_3_G Main Residue Disorder Percentage = 8 Note
PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF # 62 Check
PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note

0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
10 ALERT level C = Check. Ensure it is not caused by an omission or oversight
10 ALERT level G = General information/check it is not something unexpected

4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
12 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 29/02/2016; check.def file version of 29/02/2016
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 140301lgm_0m

Bond precision: C-C = 0.0042 A Wavelength=0.71073

Cell:
\[a=15.0980(6)\] \[b=19.4054(8)\] \[c=8.4923(4)\]
\[alpha=90\] \[beta=98.468(2)\] \[gamma=90\]
Temperature: 296 K

\[
\begin{array}{ll}
\text{Calculated} & \text{Reported} \\
\text{Volume} & 2460.97(18) & 2460.97(18) \\
\text{Space group} & \text{P 21/c} & \text{P21/c} \\
\text{Hall group} & \text{-P 2ybc} & ? \\
\text{Moiety formula} & \text{C26 H18 F6 N2 S2} & ? \\
\text{Sum formula} & \text{C26 H18 F6 N2 S2} & \text{C26 H18 F6 N2 S2} \\
\text{Mr} & 536.54 & 536.54 \\
\text{Dx, g cm}^{-3} & 1.448 & 1.448 \\
\text{Z} & 4 & 4 \\
\text{Mu (mm}^{-1}) & 0.280 & 0.280 \\
\text{F000} & 1096.0 & 1096.0 \\
\text{F000'} & 1097.65 & \\
\text{h,k,lmax} & 19,25,11 & 19,25,11 \\
\text{Nref} & 5716 & 5695 \\
\text{Tmin,Tmax} & 0.914,0.930 & 0.916,0.931 \\
\text{Tmin'} & 0.914 & \\
\end{array}
\]

Correction method= # Reported T Limits: Tmin=0.916 Tmax=0.931
AbsCorr = NONE

Data completeness= 0.996
Theta(max)= 27.630

\[R(\text{reflections})= 0.0566(4154)\]
\[\text{wr2}(\text{reflections})= 0.1886(5695)\]

S = 1.041
Npar= 328

The following ALERTS were generated. Each ALERT has the format
\text{test-name ALERT alert-type alert-level}.
Click on the hyperlinks for more details of the test.
Alert level C

ABSTY03_ALERT_1_C The _exptl_absorpt_correction_type has been given as none. However values have been given for Tmin and Tmax. Remove these if an absorption correction has not been applied.

From the CIF: _exptl_absorpt_correction_T_min 0.916
From the CIF: _exptl_absorpt_correction_T_max 0.931

PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) Range 3.2 Ratio
PLAT220_ALERT_2_C Hirshfeld Test Diff for C3 -- C4 .. 6.5 s.u.
PLAT241_ALERT_2_C High ‘MainMol’ Ueq as Compared to Neighbors of S2 Check
PLAT241_ALERT_2_C ‘MainMol’ Ueq as Compared to Neighbors of C2 Check
PLAT242_ALERT_2_C Low ‘MainMol’ Ueq as Compared to Neighbors of C15 Check
PLAT242_ALERT_2_C ‘MainMol’ Ueq as Compared to Neighbors of C24 Check
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.00423 Ang.

Alert level G

PLAT005_ALERT_5_G No Embedded Refinement Details found in the CIF Please Do !
PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.10 Report
PLAT093_ALERT_1_G No s.u.’s on H-positions, Refinement Reported as mixed Check
PLAT434_ALERT_2_G Short Inter HL..HL Contact F2 .. F4 .. 2.82 Ang.
PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note

0 ALERT level A = Most likely a serious problem - resolve or explain
8 ALERT level B = A potentially serious problem, consider carefully
6 ALERT level C = Check. Ensure it is not caused by an omission or oversight
3 ALERT level G = General information/check it is not something unexpected

3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
8 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 29/02/2016; check.def file version of 29/02/2016