Supplementary Information

An Efficient Method for the Hydrolysis of Potassium Organotrifluoroborates Promoted by Montmorillonite K10

Renato L. Silva, a Cosme S. Santos, b Jonh A. M. Santos, b Roberta A. Oliveira, a Paulo H. Menezes a and Juliano C. R. Freitas*, b,c

a Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife-PE, Brazil

b Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900 Recife-PE, Brazil

c Centro de Educação e Saúde, Universidade Federal de Campina Grande, 58175-000 Cuité-PB, Brazil

*e-mail: julianocrufino@pq.cnpq.br
Figure S1. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2a.
Figure S2. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2a.
Figure S3. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2a.
Figure S4. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2b.
Figure S5. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2b.
Figure S6. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2b.
Figure S7. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2c.
Figure S8. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2c.
Figure S9. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2c.
Figure S10. 1H NMR spectrum (400 MHz, DMSO-d$_6$) of compound 2d.
Figure S11. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2d.
Figure S12. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2d.
Figure S13. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2e.
Figure S14. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2e.
Figure S15. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound $2e$.
Figure S16. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2f.
Figure S17. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2f.
Figure S18. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2f.
Figure S19. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2g.
Figure S20. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2g.
Figure S21. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2g.
Figure S22. 19F NMR spectrum (376 MHz, DMSO-d_6) of compound 2g.
Figure S23. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2h.
Figure S24. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2h.
Figure S25. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2h.
Figure S26. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2i.
Figure S27. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2i.
Figure S28. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2i.
Figure S29. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2j.
Figure S30. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2j.
Figure S31. 1B NMR spectrum (128 MHz, DMSO-d_6) of compound 2j.
Figure S32. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2k.
Figure S33. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2k.
Figure S34. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2k.
Figure S35. 19F NMR spectrum (376 MHz, DMSO-d_6) of compound 2k.
Figure S36. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2l.
Figure S37. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2l.
Figure S38. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2l.
Figure S39. 19F NMR spectrum (376 MHz, DMSO-d_6) of compound 2l.
Figure S40. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2m.
Figure S41. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2m.
Figure S42. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2m.
Figure S43. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2n.
Figure S44. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2n.
Figure S45. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2n.
Figure S46. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 2o.
Figure S47. 13C NMR spectrum (100 MHz, DMSO-d_6) of compound 2o.
Figure S48. 11B NMR spectrum (128 MHz, DMSO-d_6) of compound 2o.
Figure S49. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3a.
Figure S50. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3a.
Figure S51. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3a.
Figure S52. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3b.
Figure S53. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3b.
Figure S54. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3b.
Figure S55. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3c.
Figure S56. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3c.
Figure S57. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3c.
Figure S58. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3d.
Figure S59. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3d.
Figure S60. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3d.
Figure S61. 19F NMR spectrum (376 MHz, CDCl$_3$) of compound 3d.
Figure S62. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3e.
Figure S63. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3e.
Figure S64. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3e.
Figure S65. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3f.
Figure S66. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3f.
Figure S67. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3f.
Figure S68. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3g.
Figure S69. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3g.
Figure S70. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3g.
Figure S71. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3h.
Figure S72. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3h.
Figure S73. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3h.
Figure S74. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3i.
Figure S75. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3i.
Figure S76. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3i.
Figure S77. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3j.
Figure S78. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3j.
Figure S79. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3j.
Figure S80. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3k.
Figure S81. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3k.
Figure S82. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3k.
Figure S83. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3l.
Figure S84. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3l.
Figure S85. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3l.
Figure S86. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3m.
Figure S87. 13C NMR spectrum (100 MHz, CDCl$_3$) of compound 3m.
Figure S88. 11B NMR spectrum (128 MHz, CDCl$_3$) of compound 3m.