Synthesis of the Novel 4,4’- and 6,6’- Dihydroxamic - 2,2’-Bipyridines and Improved Routes to 4,4’- and 6,6’- Substituted 2,2’-Bipyridines and Mono-N-Oxide-2,2’-Bipyridine

Claudio Luis Donnicia,*, Daniel Henrique Máximo Filhoa, Leda Lúcia Cruz Moreiraa, Genuína Teixeira dos Reisa, Estefania Santos Cordeiroa, Ione Ma. Ferreira de Oliveiraa, Sandra Carvalhoa, and Eucler B. Paniagob

aDepartamento de Química, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte - MG, Brazil

bUniversidade Federal de Ouro Preto, Ouro Preto - MG, Brazil

Received: November 10, 1997

Neste trabalho relatamos a preparação, por métodos mais eficientes e práticos, de derivados da 2,2’-bipiridina, que são importantes precursores para outros, tais como: 4,4’-dicarbóxi-2,2’-bipiridina (I), 6,6’-dicarbóxi-2,2’-bipiridina (II), 6,6’-dicarboxotiamida - 2,2’-bipiridina (III), 4,4’-dinitro-N,N’-dióxido-2,2’-bipiridina (IV) e mono-N-óxido-2,2’-bipiridina (VII). A síntese dos ligantes inéditos 4,4’-dihidroxâmico-2,2’-bipiridina (V) e 6,6’-dihidroxâmico-2,2’-bipiridina (VI) é também relatada.

The preparation of key precursors for many 2,2’-bipyridine derivatives such as 4,4’-dicarboxy-2,2’-bipiridina (I), 6,6’-dicarboxy-2,2’-bipiridina-acid (II), 4,4’-dinitro-2,2’-bipiridine-N,N-di oxide (III), 6,6’-dicarbothioamide-2,2’-bipiridina (IV) and mono-N-oxide-2,2’-bipiridina (VII) through more efficient methods is described. The syntheses of the novel ligands 4,4’-dihydroxamic-2,2’-bipiridina (V) and 6,6’-dihydroxamic-2,2’-bipiridina (VI) are also reported.

Keywords: 2,2’-bipyridine derivatives, improved syntheses, hydroxamic 2,2’-bipyridines

Introduction

2,2’-Bipyridinyls continue to attract attention as important ligands of great interest for chelation of transition metals1 due to their ability to form very stable complexes with many cations and to their remarkable anti-tumoral2-5, catalytic6, electrocatalytic7,8 and photochemical9 properties. Nevertheless, the methods available for the synthesis of new or even well-known symmetrical and unsymmetrical derivatives of 2,2’-bipyridines are usually not practical, and present low yields. 2,2’-Bipyridinyls can be prepared by three principal routes: i) from the cyclization of appropriately substituted precursors10a,b, ii) by coupling reactions of pyridines10c,11, iii) from the functionalization of the heteroaromatic ring of 2,2’-bipyridine through electrophilic and nucleophilic aromatic substitution reactions. The coupling methods give low yields and the cyclization methods generally require the preparation of complex precursors. In fact, the functionalization of 2,2’-bipyridine is the most used method to obtain substituted 2,2’-bipyridinyls but, in many cases, low yields are obtained. In this article we describe new, easier and more efficient methods to synthesize important precursors for substituted 2,2’-bipyridines, such as 6,6’-dicarboxy-2,2’-bipiridina acid (I), 4,4’-dicarboxy-2,2’-bipiridina (II) and 4,4’-dinitro-2,2’-bipiridine-N,N’-dioxide (III). The 6,6’-dicarbothioamide-2,2’-bipiridina (IV), an important precursor for thiazolyl derivatives and a ligand for complexes with antitumoral activity2-5, was also prepared by an improved procedure.

The synthesis of the novel ligands 4,4’-dihydroxamic-2,2’-bipiridina (V) and 6,6’-dihydroxamic-2,2’-bipiridina (VI) are also reported.
Results and Discussion

The 4,4′-dicarboxy-2,2′-bipyridine (I) and the 6,6′-derivative (II) are key intermediates to the synthesis of several carboxylic acid derivatives and other analogues. The preparation of 4,4′-dicarboxylic acid (I) (Scheme 1) has usually been carried out starting from the oxidation of the commercially available 4,4′-dimethyl-2,2′-bipyridine (VIII) with KMnO₄, but with low yield (< 40%). We obtained I from oxidation of VIII with dichromate acid solution in much higher yield (85%). The 6,6′-dicarboxy-2,2′-bipyridine (II) was prepared starting from 6,6′-dimethyl-2,2′-bipyridine (IX) (not available commercially), which could be synthesized from 6-chloro-2-picoline (X) by oxidation of with KMnO₄.

Oae’s method (65% yield) followed by oxidation with dichromate acid solution, thus obtaining a much higher yield (90%) (yield = 50% from starting material X) (Scheme 2). (II) was also synthesized through a new route, starting from the 2,2′-bipyridine (XI) via 2,2′-bipyridine-N,N′-dioxide (XII) and the 6,6′-dicyano-2,2′-bipyridine (XIII), a common precursor for many other derivatives (Scheme 2).

The 4,4′-dinitro-2,2′-bipyridine-N,N′-dioxide (III) is another very important precursor to several bipyridine derivatives. III is usually synthesized in low to moderate yields (≈45%), but the nitration of pyridine-N-oxide gives 80-90% yield. We noticed that in the nitration of pyridine-N-oxide the sulfonitric solution was used in much greater excess (heteroaromatic/HNO₃/H₂SO₄ = 1:35:10 molar ratio) compared to the usually used for the 2,2′-bipyrdyl nitration (heteroaromatic/HNO₃/H₂SO₄ = 1:9:3.7 molar ratio). In fact, we observed higher yields (75%) when we used a higher concentration of sulfonitric solution for the nitration of 2,2′-bipyridine-N,N′-dioxide (XIII) (Scheme 3).

We have also been studying new derivatives of 6,6′-dicarbothioamide-2,2′-bipyridine (IV) which have shown anti-tumoral activity, as well as their metal complexes (with Fe(II)). We are studying the complexation with other metals such as Fe(III), Ni(II), Ru(II), Pd(II) and Pt(II). It is noteworthy that in the last step of a previously reported synthesis, the conversion of the 6,6′-dicyano-2,2′-bipyridine XIII to the dithiocarbamide IV is very complicated (48 h, using liquid ammonia and gaseous H₂SO₄) and
with only moderate yield (65% yield). We have devised a much easier and faster method17 using thioacetamide with HCl on a steam bath for 30 min (71% yield) (Scheme 4).

The 4,4'-dihydroxamic-2,2'-bipyridine (V) and 6,6'-dihydroxamic-2,2'-bipyridine (VI) were prepared starting from their carboxylic acid analogues, I and II prepared as mentioned before, going through the diacyl dichloride (formed with SOCl\textsubscript{2}) and followed by direct reaction with hydroxylamine hydrochloride in the presence of dried triethylamine18 (Schemes 5 and 6). The IR spectrum shows the characteristic bands of the hydroxamic group (C=ON-HOH) and the 1H- and 13C-NMR spectra showed the occurrence of (E-Z) isomerism in accordance with the studies of Brown and co-workers19.

The mono-N-oxide-2,2'-bipyridine (VII) is the main precursor for the synthesis of unsymmetrical mono-substituted 2,2'-bipyridines due to the higher reactivity of the mono-N-oxide ring. The synthesis of unsymmetrical bipyridines has received attention, even recently20, due to their potential as precursors of unsymmetrical heterocycles. Nevertheless, the mono-N-oxide VII is usually made using peracetic acid prepared in situ (3 h, 49% yield)5, or by using meta-chloro perbenzoic acid (MCPBA) (15 h, 79%)21. We prepared the mono-N-oxide VII in 80% yield using a new, and more selective oxidant named magnesium monoperoxyphthalate (MMPP) (XIV), in glacial acetic acid for 6 h at 85 °C (Scheme 7). Oxidations with MMPP...
afford N-oxides, sulfoxides and epoxides in good yields using mild conditions.

Experimental

Melting points were determined on a Mettler apparatus and were uncorrected. 1H- and 13C-NMR spectra were recorded on an AC-80 (80 MHz) Bruker instrument. FT-IR spectra were recorded on a Mattson instrument model Galaxy 3000. The microanalysis were performed on a Perkin-Elmer 2400B elemental analyser.

4,4'-Dicarboxy-2,2'-bipyridine (I)

To a solution of 3.14 g (9.7 mmol) of Na$_2$Cr$_2$O$_7$ in 10.6 mL of concentrated sulfuric acid, was slowly added, under magnetic stirring, 0.80 g (4.3 mmol) of 4,4'-dimethyl-2,2'-bipyridine (VII). The resultant orange slurry became dark green after a while and reaction was complete after 30 min. The reaction mixture was then poured into 100 mL of cold water forming a light yellow precipitate. After filtration and drying, the solid was dissolved in an alkaline 10% NaOH solution followed by slow acidification (pH = 2) with 10% aqueous HCl solution. This recrystallization afforded the desired compound free of Cr(+3) ions. After a second filtration compound I was dried under vacuum (P$_2$O$_5$ as drying agent) to provide a white solid (0.90 g, 85%) with m.p. > 300 °C. All spectroscopic and physical data were in full agreement with those obtained for a commercial sample.

6,6'-Dicarboxy-2,2'-bipyridine (II)

The N,N'-dioxide (XII) and 6,6'-dicyano-(XIII) derivatives were prepared as indicated in the cited reference. The 6,6'-dicarboxy-2,2'-bipyridine (II) was prepared by the acid hydrolysis of the 6,6'-dicyano-(XIII) derivative (yield 90%), or by the same oxidation method (yield: 90%) described above as applied to the 6,6'-dimethyl-derivative (IX), prepared by Oae’s coupling methodology. All spectroscopic and physical data (m.p. > 300 °C) were compatible both with the expected product and the literature data.

IR(KBr, cm$^{-1}$): 3300-3000 (vOH), 1700 (vC=O); Anal. Calcd. for C$_{12}$H$_8$N$_2$O$_3$ C 59.02; H 3.28; N 20.44; Found: C 59.06; H 3.30; N 20.33.

4,4'-Dinitro-2,2'-bipyridine-N,N'-dioxide (III)

To 2,2'-bipyridine-N,N-dioxide (XII) (5 g, 27 mmol), cooled in an ice-water bath, was slowly added a mixture of oleum-sulphuric acid (1:2 v/v, 25 mL) and fuming nitric acid (20 mL). The mixture was heated to 100 °C for 6 h with the reflux condenser fitted with a calcium chloride drying tube. After cooling, the mixture was cautiously poured onto ice (100 g) and after filtration and drying 5.7 g (75%) of a yellow solid was obtained (m.p. = 272-274 °C). (Lit23 = 272-275 °C); IR (KBr, cm$^{-1}$): 1550, 1350 (vNO$_2$); 1250 (vN-O); Anal. Calcd. for C$_{10}$H$_8$N$_2$O$_2$ C 43.15; H 2.15; N 20.15; Found: C 43.26; H 2.20; N 20.22.

6,6'-Dicarboxothioamido-2,2'-bipyridine (IV)

A solution of 1.00 g (4.86 mmol) of 6,6'-dicyano-2,2'-bipyridine (XIII) and 1.46 g (19.4 mmol) of thioacetic acid in 10 mL of dimethylformamide, under magnetic stirring, was saturated with dried HCl and heated for 30 min using a steam bath. After cooling the solution was evaporated to half of its initial volume. Upon addition of 100 mL of anhydrous ethanol precipitation of a very intense yellow solid occurs. After filtration and drying under vacuum 1.1 g (82%) of a yellow solid was obtained, m.p.: 247 - 254 °C; (Lit13 = 247-257 °C); IR (KBr, cm$^{-1}$); H-NMR (δ, DMF): 10.45-10.29 (2H, br s, NH$_2$), 9.10 (2H, dd, J = 7.8 Hz, 1Hz); 8.75 (2H, dd, J = 7.9 Hz, 1 Hz) and 8.22 (2H, dd, J = 7.9 Hz, 7.9 Hz); 13C-NMR (δ, DMF): 195.79; 153.53; 152.17;138.94; 125.90; 124.59; Anal. Calcd. for C$_{17}$H$_{10}$N$_4$S$_2$C 52.55; H 3.65; N 20.44; Found: C 52.34; H 3.67 ; N 20.27.

4,4'-Dihydroxamic-2,2'-bipyridine (V)

a) Preparation of 2,2'-bipyridine-4,4'-dicarboxylic acid dichloride: To 0.86 g (3.5 mmol) of 4,4'-dicarboxy-2,2'-bipyridine (I) was added 9.0 mL (124 mmol) of thionyl chloride (SOCl$_2$), under magnetic stirring. The mixture was heated for 3 h under reflux. After cooling the solution was evaporated in the presence of anhydrous benzene (30 mL) for total elimination of SOCl$_2$ and the crude dichloride was directly submitted to the following reaction:

b) A solution of 0.58 g (8.4 mmol) of hydroxylamine hydrochloride and 2.3 mL of triethylamine (16.8 mmol) in 7.0 mL of chloroform was added to a 25 mL round bottom flask equipped with a magnetic stirrer, dropping funnel and reflux condenser containing the crude acid dichloride in 7 mL of dry chloroform. The mixture was stirred for 48 h at room temperature and after filtration and drying 0.82 g (86%) of a light brown solid was obtained with m.p. = 202-204 °C.

IR (KBr, cm$^{-1}$): 3300-2700 (vNH e vOH); 1680 ,1640 (vC=O); 1580,1450 (vC-N δNH); 1120 (δOH); 1H-NMR (δ, DMSO-d$_6$): 8.84-8.78 (2H,d), 8.73 (2H,s), 7.78 (2H, m, 2H$_1$); 13C-NMR (δ, DMSO-d$_6$): 161.97 (C$_7$); 155.45(C$_2$); 150.07(C$_6$);141.49(C$_4$ - (E)); 125.44(C$_5$ - (Z)); 123.94 (C$_3$ - (E)); 121.48 (C$_3$ -(Z)), 120.42 (C$_3$ -(E)),118.03 (C$_3$ -(Z)); Anal. Calcd. for C$_{12}$H$_{10}$N$_4$S$_3$C 52.55; H 3.48; N 20.44; Found: C 52.36; H 3.40 ; N 20.32.

6,6'-Dihydroxamic-2,2'-bipyridine (VI)

a) Preparation of 2,2'-bipyridine-6,6'-dicarboxylic acid dichloride: Following the same procedure described before 0.43 g (1.8 mmol) of 4,4'-dicarboxy-2,2'-bipyridine (I) and
5.0 mL (69 mmol) of thionyl chloride (SOCl₂) were combined. The crude dichloride was directly submitted to the following reaction:

b) 0.54 g (8.1 mmol) of hydroxylamine hydrochloride and 2.2 mL of triethylamine (16.2 mmol) in 7.0 mL chloroform were put to react as described before. 0.40 g (84%) of a white solid was obtained with m.p. > 300 °C.

IR (KBr, cm⁻¹): 3300-2900 (νNH and νOH); 1690, 1650 (νC=O); 1550,1450 (νCN and δNH); 1120 (δOH); 1H-NMR (δ, DMSO-d₆): 11.69 (2H, s, OH), 9.21 (2H, s, H₃), 9.08 (4H, d, H₂); 8.12 (2H, br, NH) and 8.05 (2H, d, H₄); 13C-NMR (δ, DMSO-d₆): 165.86 (C₁); 160.97 (C₂); 153.53 (C₆ - (E)); 149.39 (C₆ - (Z)); 138.90 (C₅ - (E)); 137.58 (C₅ - (Z)); 125.40 (C₃ - (E)); 124.06 (C₃ - (Z)); 122.24 (C₄); Anal. Calcd. for C₁₂H₉N₂S2: C 52.55; H 3.68; N 20.43; Found: C 52.51; H 3.25; N 20.3.

Mono-N-oxide-2,2’-bipyridine (VII)

To a solution of 1.0 g (6.4 mmol) of 2,2'-bipyridine (XI) in 10 mL of glacial acetic acid, in a round bottom flask equipped with magnetic stirrer and reflux condenser, was slowly added 0.80 g (1.6 mmol) of magnesium monoperoctate (MMPP). After 6 h of heating at 80 °C, the solution was cooled and evaporated in a desiccator, with sodium bicarbonate aqueous solution. The organic phase was then washed with 5% sodium hydroxide, under vacuum. The organic mixture was then dissolved in chloroform (20 mL) and washed with a 5% sodium bicarbonate aqueous solution. The organic phase was then dried with anhydrous magnesium sulfate, filtered and evaporated to afford 0.88 g (80%) of a gray solid, m.p. = 57-58 °C (Lit: 56-58 °C (Lit); IR (KBr, cm⁻¹): 1250(νN=O); Anal. Calcd. for C₁₂H₁₀N₂O C 69.77; H 4.65; N 16.28; Found: C 69.81; H 4.70; N 16.32.

Conclusions

The desired substituted 2,2'-bipyridines [4,4'-dicarboxy-2,2'-bipyridine (I), 6,6'-dicarboxy-2,2'-bipyridine (II), 4,4'-dinitro-2,2'-bipyridine-N,N-dioxide (III) and 6,6'-dicarboxothioamide-2,2'-bipyridine (IV)] and also mono-N-oxide-2,2'-bipyridine (VII), were prepared by improved methods. The novel 4,4'-dihydroxamic-2,2'-bipyridine (V) and 6,6'-dihydroxamic-2,2'-bipyridine (VI) synthesized revealed themselves as excellent ligands for Fe(II) and Fe(III). Therefore, it should be relevant to investigate the utilization of V and VI as siderophores for treatment of both iron overload and deficiency conditions. Finally, with these improved methods we could synthesis novel, 2,2'-bipyridine derivatives and their corresponding complexes (such as rhodium, cobalt, etc) which are currently being studied. These results will be reported in due course.

Acknowledgments

The authors wish to thank Pró-Reitoria de Pesquisa (PRPQ/UFMG), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Programa de Apoio ao Desenvolvimento Científico e Tecnológico (PADCT) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. D.H. Máximo Fo., L.L.C. Moreira, G.T. Reis and E.S. Cordeiro received undergraduate scholarships from CNPq.

References